Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Sign in
Toggle navigation
F
fund_report
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
彭熊
fund_report
Commits
b192a760
Commit
b192a760
authored
Dec 09, 2020
by
李宗熹
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
修改self.portfolio
parent
3e6b279e
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
143 additions
and
65 deletions
+143
-65
portfolio_diagnose.py
app/service/portfolio_diagnose.py
+143
-65
No files found.
app/service/portfolio_diagnose.py
View file @
b192a760
# -*- coding: UTF-8 -*-
"""
@author: Zongxi.Li
@file:portfolio_diagnose.py
@time:2020/12/07
"""
from
app.utils.fund_rank
import
*
from
app.utils.fund_rank
import
*
from
app.utils.risk_parity
import
*
from
app.utils.risk_parity
import
*
from
app.pypfopt
import
risk_models
from
app.pypfopt
import
risk_models
...
@@ -52,23 +58,6 @@ def replace_fund(manager, substrategy, fund_rank):
...
@@ -52,23 +58,6 @@ def replace_fund(manager, substrategy, fund_rank):
return
df
[
'fund_id'
]
.
values
[
0
]
return
df
[
'fund_id'
]
.
values
[
0
]
def
get_tamp_fund
():
"""获取探普产品池净值表
Returns:
"""
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_fund
:
tamp_fund_session
=
tamp_fund
.
session
sql
=
"SELECT id FROM tamp_fund_info WHERE id LIKE 'HF
%
'"
cur
=
tamp_fund_session
.
execute
(
sql
)
data
=
cur
.
fetchall
()
# df = pd.read_sql(sql, con)
df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'fund_id'
])
# df.rename({'id': 'fund_id'}, axis=1, inplace=True)
return
df
def
search_rank
(
fund_rank
,
fund
,
metric
):
def
search_rank
(
fund_rank
,
fund
,
metric
):
"""查找基金在基金排名表中的指标
"""查找基金在基金排名表中的指标
...
@@ -157,13 +146,17 @@ def choose_bad_evaluation(evaluation):
...
@@ -157,13 +146,17 @@ def choose_bad_evaluation(evaluation):
def
get_fund_rank
():
def
get_fund_rank
():
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_product
:
"""获取基金指标排名
tamp_product_session
=
tamp_product
.
session
:return: 基金指标排名表
"""
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_fund
:
tamp_fund_session
=
tamp_fund
.
session
sql
=
"SELECT * FROM fund_rank"
sql
=
"SELECT * FROM fund_rank"
# df = pd.read_sql(sql, con)
# df = pd.read_sql(sql, con)
# df = pd.read_csv('fund_rank.csv', encoding='gbk')
# df = pd.read_csv('fund_rank.csv', encoding='gbk')
cur
=
tamp_
product
_session
.
execute
(
sql
)
cur
=
tamp_
fund
_session
.
execute
(
sql
)
data
=
cur
.
fetchall
()
data
=
cur
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'index'
,
'fund_id'
,
'range_return'
,
'annual_return'
,
'max_drawdown'
,
df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'index'
,
'fund_id'
,
'range_return'
,
'annual_return'
,
'max_drawdown'
,
'sharp_ratio'
,
'volatility'
,
'sortino_ratio'
,
'downside_risk'
,
'sharp_ratio'
,
'volatility'
,
'sortino_ratio'
,
'downside_risk'
,
...
@@ -173,18 +166,20 @@ def get_fund_rank():
...
@@ -173,18 +166,20 @@ def get_fund_rank():
return
df
return
df
def
get_index_daily
(
index_id
):
def
get_index_daily
(
index_id
,
start_date
):
"""获取指数数据
"""获取指数
日更
数据
Args:
Args:
index_id: 指数ID
index_id: 指数ID
start_date: 数据开始时间
Returns:与组合净值形式相同的表
Returns:与组合净值形式相同的表
"""
"""
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_product
:
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_product
:
tamp_product_session
=
tamp_product
.
session
tamp_product_session
=
tamp_product
.
session
sql
=
"SELECT ts_code, trade_date, close FROM index_daily WHERE ts_code='{}'"
.
format
(
index_id
)
sql
=
"SELECT ts_code, trade_date, close FROM index_daily "
\
"WHERE ts_code='{}' AND trade_date>'{}'"
.
format
(
index_id
,
start_date
)
# df = pd.read_sql(sql, con).dropna(how='any')
# df = pd.read_sql(sql, con).dropna(how='any')
cur
=
tamp_product_session
.
execute
(
sql
)
cur
=
tamp_product_session
.
execute
(
sql
)
data
=
cur
.
fetchall
()
data
=
cur
.
fetchall
()
...
@@ -198,6 +193,49 @@ def get_index_daily(index_id):
...
@@ -198,6 +193,49 @@ def get_index_daily(index_id):
return
df
return
df
def
get_index_monthly
(
index_id
,
start_date
):
"""获取指数月度数据
Args:
index_id: 指数ID
start_date: 数据开始时间
Returns:与组合净值形式相同的表
"""
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_fund
:
tamp_fund_session
=
tamp_fund
.
session
sql
=
"SELECT ts_code, trade_date, pct_chg FROM index_monthly "
\
"WHERE ts_code='{}' AND trade_date>'{}'"
.
format
(
index_id
,
start_date
)
# df = pd.read_sql(sql, con).dropna(how='any')
cur
=
tamp_fund_session
.
execute
(
sql
)
data
=
cur
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'fund_id'
,
'end_date'
,
'pct_chg'
])
df
[
'end_date'
]
=
pd
.
to_datetime
(
df
[
'end_date'
])
df
.
set_index
(
'end_date'
,
drop
=
True
,
inplace
=
True
)
df
.
sort_index
(
inplace
=
True
,
ascending
=
True
)
df
=
rename_col
(
df
,
index_id
)
return
df
def
get_tamp_fund
():
"""获取探普产品池净值表
Returns:
"""
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_fund
:
tamp_fund_session
=
tamp_fund
.
session
sql
=
"SELECT id FROM tamp_fund_info WHERE id LIKE 'HF
%
'"
cur
=
tamp_fund_session
.
execute
(
sql
)
data
=
cur
.
fetchall
()
# df = pd.read_sql(sql, con)
df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'fund_id'
])
# df.rename({'id': 'fund_id'}, axis=1, inplace=True)
return
df
def
get_tamp_nav
(
fund
,
start_date
,
rollback
=
False
,
invest_type
=
'public'
):
def
get_tamp_nav
(
fund
,
start_date
,
rollback
=
False
,
invest_type
=
'public'
):
"""获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表
"""获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表
...
@@ -277,11 +315,11 @@ def get_radar_data(fund):
...
@@ -277,11 +315,11 @@ def get_radar_data(fund):
def
get_fund_name
(
fund
):
def
get_fund_name
(
fund
):
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_
product
:
with
TAMP_SQL
(
tamp_fund_engine
)
as
tamp_
fund
:
tamp_
product_session
=
tamp_product
.
session
tamp_
fund_session
=
tamp_fund
.
session
sql
=
"SELECT fund_short_name FROM fund_info WHERE id='{}'"
.
format
(
fund
)
sql
=
"SELECT fund_short_name FROM fund_info WHERE id='{}'"
.
format
(
fund
)
# df = pd.read_sql(sql, con)
# df = pd.read_sql(sql, con)
cur
=
tamp_
product
_session
.
execute
(
sql
)
cur
=
tamp_
fund
_session
.
execute
(
sql
)
data
=
cur
.
fetchall
()
data
=
cur
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'fund_short_name'
])
df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'fund_short_name'
])
return
df
return
df
...
@@ -294,14 +332,17 @@ tamp_fund = get_tamp_fund()
...
@@ -294,14 +332,17 @@ tamp_fund = get_tamp_fund()
class
PortfolioDiagnose
(
object
):
class
PortfolioDiagnose
(
object
):
def
__init__
(
self
,
client_type
,
portfolio
,
invest_amount
,
expect_return
=
None
,
def
__init__
(
self
,
client_type
,
portfolio
,
invest_amount
,
expect_return
=
0.2
,
expect_drawdown
=
None
,
index_id
=
'000905.SH'
,
invest_type
=
'private'
,
start_date
=
None
,
end_date
=
None
):
expect_drawdown
=
0.1
,
index_id
=
'000905.SH'
,
invest_type
=
'private'
,
start_date
=
None
,
end_date
=
None
):
"""基金诊断
"""基金诊断
Args:
Args:
client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
portfolio: 投资组合:[基金1, 基金2, 基金3...]
portfolio: 投资组合:[基金1, 基金2, 基金3...]
invest_amount: 投资金额:10000000元
invest_amount: 投资金额:10000000元
expect_return: 期望收益
expect_drawdown: 期望回撤
index_id: 指数ID
invest_type: 投资类型:public, private, ...
invest_type: 投资类型:public, private, ...
start_date: 诊断所需净值的开始日期
start_date: 诊断所需净值的开始日期
end_date: 诊断所需净值的结束日期
end_date: 诊断所需净值的结束日期
...
@@ -348,51 +389,52 @@ class PortfolioDiagnose(object):
...
@@ -348,51 +389,52 @@ class PortfolioDiagnose(object):
while
prod
is
None
:
while
prod
is
None
:
# 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
# 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
portfolio
[
0
]]
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
self
.
portfolio
[
0
]]
manager
=
str
(
result
[
'manager'
]
.
values
)
manager
=
str
(
result
[
'manager'
]
.
values
)
strategy
=
result
[
'substrategy'
]
.
values
strategy
=
result
[
'substrategy'
]
.
values
replaced_fund
=
replace_fund
(
manager
,
strategy
,
fund_rank
)
replaced_fund
=
replace_fund
(
manager
,
strategy
,
fund_rank
)
if
replaced_fund
is
not
None
:
if
replaced_fund
:
# 替换基金数据非空则记录替换的基金对
# 替换基金数据非空则记录替换的基金对
prod
=
get_nav
(
replaced_fund
,
self
.
start_date
,
invest_type
=
self
.
invest_type
)
prod
=
get_nav
(
replaced_fund
,
self
.
start_date
,
invest_type
=
self
.
invest_type
)
self
.
replace_pair
[
portfolio
[
0
]]
=
replaced_fund
self
.
replace_pair
[
self
.
portfolio
[
0
]]
=
replaced_fund
else
:
else
:
# 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
# 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
self
.
no_data_fund
.
append
(
portfolio
[
0
])
self
.
no_data_fund
.
append
(
self
.
portfolio
[
0
])
self
.
portfolio
.
pop
(
0
)
self
.
portfolio
.
pop
(
0
)
prod
=
get_tamp_nav
(
self
.
portfolio
[
0
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
prod
=
get_tamp_nav
(
self
.
portfolio
[
0
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
# 记录基金的公布频率
# 记录基金的公布频率
self
.
freq_list
.
append
(
get_frequency
(
prod
))
self
.
freq_list
.
append
(
get_frequency
(
prod
))
prod
=
rename_col
(
prod
,
portfolio
[
0
])
prod
=
rename_col
(
prod
,
self
.
portfolio
[
0
])
# 循环拼接基金净值表构建组合
# 循环拼接基金净值表构建组合
for
idx
in
range
(
len
(
portfolio
)
-
1
):
for
idx
in
range
(
len
(
self
.
portfolio
)
-
1
):
prod1
=
get_tamp_nav
(
portfolio
[
idx
+
1
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
prod1
=
get_tamp_nav
(
self
.
portfolio
[
idx
+
1
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
if
prod1
is
None
or
prod1
.
index
[
-
1
]
-
prod1
.
index
[
0
]
<
0.6
*
(
self
.
end_date
-
self
.
start_date
):
if
prod1
is
None
or
prod1
.
index
[
-
1
]
-
prod1
.
index
[
0
]
<
0.6
*
(
self
.
end_date
-
self
.
start_date
):
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
portfolio
[
idx
+
1
]]
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
self
.
portfolio
[
idx
+
1
]]
if
result
[
'fund_manager_id'
]
.
count
()
!=
0
:
if
result
[
'fund_manager_id'
]
.
count
()
!=
0
:
manager
=
str
(
result
[
'fund_manager_id'
]
.
values
)
manager
=
str
(
result
[
'fund_manager_id'
]
.
values
)
substrategy
=
result
[
'substrategy'
]
.
values
[
0
]
substrategy
=
result
[
'substrategy'
]
.
values
[
0
]
replaced_fund
=
replace_fund
(
manager
,
substrategy
,
fund_rank
)
replaced_fund
=
replace_fund
(
manager
,
substrategy
,
fund_rank
)
else
:
else
:
self
.
no_data_fund
.
append
(
portfolio
[
idx
+
1
])
self
.
no_data_fund
.
append
(
self
.
portfolio
[
idx
+
1
])
continue
continue
if
replaced_fund
is
not
None
:
if
replaced_fund
:
prod1
=
get_nav
(
replaced_fund
,
self
.
start_date
,
invest_type
=
self
.
invest_type
)
prod1
=
get_nav
(
replaced_fund
,
self
.
start_date
,
invest_type
=
self
.
invest_type
)
self
.
replace_pair
[
portfolio
[
idx
+
1
]]
=
replaced_fund
self
.
replace_pair
[
self
.
portfolio
[
idx
+
1
]]
=
replaced_fund
self
.
freq_list
.
append
(
get_frequency
(
prod1
))
self
.
freq_list
.
append
(
get_frequency
(
prod1
))
prod1
=
rename_col
(
prod1
,
replaced_fund
)
prod1
=
rename_col
(
prod1
,
replaced_fund
)
else
:
else
:
self
.
no_data_fund
.
append
(
portfolio
[
idx
+
1
])
self
.
no_data_fund
.
append
(
self
.
portfolio
[
idx
+
1
])
continue
continue
else
:
else
:
self
.
freq_list
.
append
(
get_frequency
(
prod1
))
self
.
freq_list
.
append
(
get_frequency
(
prod1
))
prod1
=
rename_col
(
prod1
,
portfolio
[
idx
+
1
])
prod1
=
rename_col
(
prod1
,
self
.
portfolio
[
idx
+
1
])
# 取prod表和prod1表的并集
# 取prod表和prod1表的并集
prod
=
pd
.
merge
(
prod
,
prod1
,
on
=
[
'end_date'
],
how
=
'outer'
)
prod
=
pd
.
merge
(
prod
,
prod1
,
on
=
[
'end_date'
],
how
=
'outer'
)
...
@@ -476,6 +518,7 @@ class PortfolioDiagnose(object):
...
@@ -476,6 +518,7 @@ class PortfolioDiagnose(object):
prod
=
pd
.
merge
(
prod
,
proposal_nav
,
how
=
'outer'
,
on
=
'end_date'
)
.
astype
(
float
)
prod
=
pd
.
merge
(
prod
,
proposal_nav
,
how
=
'outer'
,
on
=
'end_date'
)
.
astype
(
float
)
prod
.
sort_index
(
inplace
=
True
)
prod
.
sort_index
(
inplace
=
True
)
prod
.
ffill
(
inplace
=
True
)
prod
.
ffill
(
inplace
=
True
)
prod
.
bfill
(
inplace
=
True
)
prod
=
resample
(
prod
,
get_trade_cal
(),
min
(
self
.
freq_list
))
prod
=
resample
(
prod
,
get_trade_cal
(),
min
(
self
.
freq_list
))
self
.
new_correlation
=
cal_correlation
(
prod
)
self
.
new_correlation
=
cal_correlation
(
prod
)
...
@@ -529,14 +572,31 @@ class PortfolioDiagnose(object):
...
@@ -529,14 +572,31 @@ class PortfolioDiagnose(object):
for
fund
in
self
.
propose_portfolio
.
columns
:
for
fund
in
self
.
propose_portfolio
.
columns
:
propose_risk_mapper
[
fund
]
=
str
(
get_risk_level
(
search_rank
(
fund_rank
,
fund
,
metric
=
'substrategy'
)))
propose_risk_mapper
[
fund
]
=
str
(
get_risk_level
(
search_rank
(
fund_rank
,
fund
,
metric
=
'substrategy'
)))
# risk_upper = {"H": 0.0}
if
self
.
client_type
==
1
:
# risk_lower = {"L": 0.6, "M": 0.4}
risk_upper
=
{
"H"
:
1.0
}
risk_lower
=
{
"L"
:
0.0
}
w_low
=
1e6
/
self
.
invest_amount
elif
self
.
client_type
==
2
:
ef
=
EfficientFrontier
(
mu
,
S
,
expected_drawdown
=
dd
)
risk_upper
=
{
"H"
:
1.0
}
# ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
risk_lower
=
{
"L"
:
0.0
}
# weights = ef.nonconvex_objective(deviation_risk_parity, ef.cov_matrix)
elif
self
.
client_type
==
3
:
ef
.
efficient_return
(
0.3
)
risk_upper
=
{
"H"
:
1.0
}
risk_lower
=
{
"L"
:
0.0
}
elif
self
.
client_type
==
4
:
risk_upper
=
{
"H"
:
1.0
}
risk_lower
=
{
"L"
:
0.0
}
elif
self
.
client_type
==
5
:
risk_upper
=
{
"H"
:
1.0
}
risk_lower
=
{
"L"
:
0.0
}
else
:
risk_upper
=
{
"H"
:
1.0
}
risk_lower
=
{
"L"
:
0.0
}
raise
ValueError
w_low
=
1000000
/
self
.
invest_amount
# ef = EfficientFrontier(mu, S, weight_bounds=[w_low, 1], expected_drawdown=dd)
ef
=
EfficientFrontier
(
mu
,
S
,
weight_bounds
=
[
0
,
1
],
expected_drawdown
=
dd
)
ef
.
add_sector_constraints
(
propose_risk_mapper
,
risk_lower
,
risk_upper
)
ef
.
efficient_return
(
target_return
=
self
.
expect_return
)
clean_weights
=
ef
.
clean_weights
()
clean_weights
=
ef
.
clean_weights
()
# ef.portfolio_performance(verbose=True)
# ef.portfolio_performance(verbose=True)
self
.
new_weights
=
np
.
array
(
list
(
clean_weights
.
values
()))
self
.
new_weights
=
np
.
array
(
list
(
clean_weights
.
values
()))
...
@@ -564,7 +624,7 @@ class PortfolioDiagnose(object):
...
@@ -564,7 +624,7 @@ class PortfolioDiagnose(object):
# self.proposal_weights = calcu_w(w_origin, S, risk_target)
# self.proposal_weights = calcu_w(w_origin, S, risk_target)
def
return_compare
(
self
):
def
return_compare
(
self
):
index_data
=
get_index_daily
(
self
.
index_id
)
index_data
=
get_index_daily
(
self
.
index_id
,
self
.
start_date
)
index_data
=
pd
.
merge
(
index_data
,
self
.
propose_portfolio
,
how
=
'inner'
,
left_index
=
True
,
right_index
=
True
)
index_data
=
pd
.
merge
(
index_data
,
self
.
propose_portfolio
,
how
=
'inner'
,
left_index
=
True
,
right_index
=
True
)
index_return
=
index_data
.
iloc
[:,
:]
/
index_data
.
iloc
[
0
,
:]
-
1
index_return
=
index_data
.
iloc
[:,
:]
/
index_data
.
iloc
[
0
,
:]
-
1
# origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
# origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
...
@@ -610,7 +670,7 @@ class PortfolioDiagnose(object):
...
@@ -610,7 +670,7 @@ class PortfolioDiagnose(object):
# 正收益基金数量
# 正收益基金数量
group_hold_data
=
pd
.
DataFrame
(
group_result
[
group_name
][
"group_hoding_info"
])
group_hold_data
=
pd
.
DataFrame
(
group_result
[
group_name
][
"group_hoding_info"
])
profit_positive_num
=
group_hold_data
[
group_hold_data
[
"profit"
]
>
0
][
"profit"
]
.
count
()
profit_positive_num
=
group_hold_data
[
group_hold_data
[
"profit"
]
>
0
][
"profit"
]
.
count
()
if
profit_positive_num
>
0
:
if
profit_positive_num
>
0
:
profit_positive_evaluate
=
str
(
profit_positive_num
)
+
"只基金取的正收益,"
profit_positive_evaluate
=
str
(
profit_positive_num
)
+
"只基金取的正收益,"
else
:
else
:
...
@@ -863,6 +923,16 @@ class PortfolioDiagnose(object):
...
@@ -863,6 +923,16 @@ class PortfolioDiagnose(object):
70
<=
z_score
<
80
,
70
<=
z_score
<
80
,
z_score
<
70
],
[
0
,
1
,
2
])
.
item
()
z_score
<
70
],
[
0
,
1
,
2
])
.
item
()
index_return_monthly
=
get_index_monthly
(
self
.
index_id
,
self
.
start_date
)
fund_nav
=
get_tamp_nav
(
fund_id
,
self
.
start_date
,
invest_type
=
self
.
invest_type
)
fund_nav_monthly
=
fund_nav
.
groupby
([
fund_nav
.
index
.
year
,
fund_nav
.
index
.
month
])
.
tail
(
1
)
fund_nav_monthly
=
rename_col
(
fund_nav_monthly
,
fund_id
)
fund_return_monthly
=
simple_return
(
fund_nav_monthly
[
fund_id
]
.
astype
(
float
))
index_return_monthly
.
index
=
index_return_monthly
.
index
.
strftime
(
'
%
Y-
%
m'
)
fund_return_monthly
.
index
=
fund_return_monthly
.
index
.
strftime
(
'
%
Y-
%
m'
)
compare
=
pd
.
merge
(
index_return_monthly
,
fund_return_monthly
,
how
=
'inner'
,
left_index
=
True
,
right_index
=
True
)
fund_win_rate
=
((
compare
[
fund_id
]
-
compare
[
'pct_chg'
])
>
0
)
.
sum
()
return_rank
=
search_rank
(
fund_rank
,
fund_id
,
metric
=
'annual_return_rank'
)
return_rank
=
search_rank
(
fund_rank
,
fund_id
,
metric
=
'annual_return_rank'
)
return_level
=
np
.
select
([
return_rank
>=
0.8
,
return_level
=
np
.
select
([
return_rank
>=
0.8
,
0.7
<=
return_rank
<
0.8
,
0.7
<=
return_rank
<
0.8
,
...
@@ -886,7 +956,7 @@ class PortfolioDiagnose(object):
...
@@ -886,7 +956,7 @@ class PortfolioDiagnose(object):
sharp_rank
<
0.6
],
[
0
,
1
,
2
])
.
item
()
sharp_rank
<
0.6
],
[
0
,
1
,
2
])
.
item
()
data
=
{
1
:
[
total_level
,
return_level
,
drawdown_level
,
sharp_level
],
data
=
{
1
:
[
total_level
,
return_level
,
drawdown_level
,
sharp_level
],
2
:
[
return_triple
,
"12"
,
return_bool
],
2
:
[
return_triple
,
str
(
fund_win_rate
)
,
return_bool
],
3
:
[
drawdown_triple
,
drawdown_triple
,
format
(
drawdown_value
,
'.2
%
'
),
drawdown_triple
],
3
:
[
drawdown_triple
,
drawdown_triple
,
format
(
drawdown_value
,
'.2
%
'
),
drawdown_triple
],
4
:
[
return_bool
,
drawdown_bool
,
drawdown_bool
,
return_bool
,
drawdown_bool
]}
4
:
[
return_bool
,
drawdown_bool
,
drawdown_bool
,
return_bool
,
drawdown_bool
]}
...
@@ -923,7 +993,7 @@ class PortfolioDiagnose(object):
...
@@ -923,7 +993,7 @@ class PortfolioDiagnose(object):
sentence
=
{
sentence
=
{
1
:
"该基金整体表现
%
s,收益能力
%
s,回撤控制能力
%
s,风险收益比例
%
s;
\n
"
,
1
:
"该基金整体表现
%
s,收益能力
%
s,回撤控制能力
%
s,风险收益比例
%
s;
\n
"
,
2
:
"在收益方面,该基金年化收益能力
%
s同类基金平均水平,有
%
s区间跑赢指数,绝对收益能力
%
s;
\n
"
,
2
:
"在收益方面,该基金年化收益能力
%
s同类基金平均水平,有
%
s
个
区间跑赢指数,绝对收益能力
%
s;
\n
"
,
3
:
"在风险方面,该基金抵御风险能力
%
s,在同类基金中处于
%
s等水平,最大回撤为
%
s,
%
s同类基金平均水平;
\n
"
,
3
:
"在风险方面,该基金抵御风险能力
%
s,在同类基金中处于
%
s等水平,最大回撤为
%
s,
%
s同类基金平均水平;
\n
"
,
4
:
"该基金收益
%
s的同时回撤
%
s,也就是说,该基金在用
%
s风险换取
%
s收益,存在
%
s风险;
\n
"
,
4
:
"该基金收益
%
s的同时回撤
%
s,也就是说,该基金在用
%
s风险换取
%
s收益,存在
%
s风险;
\n
"
,
5
:
"基金经理,投资年限
%
s年,经验丰富;投资能力较强,生涯中共管理过
%
s只基金,历任的
%
s只基金平均业绩在同类中处于上游水平,其中
%
s只排名在前
%
s;生涯年化回报率
%
s,同期大盘只有
%
s;"
}
5
:
"基金经理,投资年限
%
s年,经验丰富;投资能力较强,生涯中共管理过
%
s只基金,历任的
%
s只基金平均业绩在同类中处于上游水平,其中
%
s只排名在前
%
s;生涯年化回报率
%
s,同期大盘只有
%
s;"
}
...
@@ -945,6 +1015,14 @@ class PortfolioDiagnose(object):
...
@@ -945,6 +1015,14 @@ class PortfolioDiagnose(object):
ret
.
append
(
single_sentence
)
ret
.
append
(
single_sentence
)
i
+=
1
i
+=
1
fund_name
=
get_fund_name
(
fund_id
)
.
values
[
0
][
0
]
fund_name
=
get_fund_name
(
fund_id
)
.
values
[
0
][
0
]
if
not
ret
:
try
:
default_evaluation
=
pd
.
read_csv
(
"evaluation.csv"
,
encoding
=
'utf-8'
,
names
=
[
'fund_id'
,
'eval'
])
ret
.
append
(
'1、'
+
default_evaluation
[
default_evaluation
[
'fund_id'
]
==
fund_id
][
'eval'
]
.
values
[
0
])
except
Exception
:
pass
evaluation_dict
=
{
'name'
:
fund_name
,
'data'
:
ret
}
evaluation_dict
=
{
'name'
:
fund_name
,
'data'
:
ret
}
if
fund_id
in
self
.
abandon_fund_score
+
self
.
abandon_fund_corr
:
if
fund_id
in
self
.
abandon_fund_score
+
self
.
abandon_fund_corr
:
evaluation_dict
[
'status'
]
=
"换仓"
evaluation_dict
[
'status'
]
=
"换仓"
...
@@ -983,14 +1061,14 @@ class PortfolioDiagnose(object):
...
@@ -983,14 +1061,14 @@ class PortfolioDiagnose(object):
return
radar_data
return
radar_data
portfolio
=
[
'HF00002JJ2'
,
'HF00005DBQ'
,
'HF0000681Q'
,
'HF00006693'
,
'HF00006AZF'
,
'HF00006BGS'
]
# portfolio = ['HF00002JJ2', 'HF00005DBQ', 'HF0000681Q', 'HF00006693', 'HF00006AZF', 'HF00006BGS']
portfolio_diagnose
=
PortfolioDiagnose
(
client_type
=
1
,
portfolio
=
portfolio
,
invest_amount
=
10000000
)
# portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
portfolio_diagnose
.
optimize
()
# portfolio_diagnose.optimize()
if
__name__
==
'__main__'
:
# if __name__ == '__main__':
print
(
portfolio_diagnose
.
single_fund_radar
())
# print(portfolio_diagnose.single_fund_radar())
print
(
portfolio_diagnose
.
propose_fund_radar
())
# print(portfolio_diagnose.propose_fund_radar())
print
(
portfolio_diagnose
.
old_portfolio_evaluation
())
# print(portfolio_diagnose.old_portfolio_evaluation())
print
(
'旧组合相关性:'
,
portfolio_diagnose
.
old_correlation
)
# print('旧组合相关性:', portfolio_diagnose.old_correlation)
print
(
'新组合相关性:'
,
portfolio_diagnose
.
new_correlation
)
# print('新组合相关性:', portfolio_diagnose.new_correlation)
print
(
'旧组合个基评价:'
,
portfolio_diagnose
.
old_portfolio_evaluation
())
# print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
print
(
'新组合个基评价:'
,
portfolio_diagnose
.
propose_fund_evaluation
())
# print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())
\ No newline at end of file
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment