Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Sign in
Toggle navigation
F
fund_report
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
彭熊
fund_report
Commits
a8ec611a
Commit
a8ec611a
authored
Dec 09, 2020
by
赵杰
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'origin/dev' into dev
parents
db686a64
b4c95f2e
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
49 additions
and
38 deletions
+49
-38
efficient_frontier.py
app/pypfopt/efficient_frontier.py
+3
-2
portfolio_diagnose.py
app/service/portfolio_diagnose.py
+45
-35
fund_rank.py
app/utils/fund_rank.py
+1
-1
No files found.
app/pypfopt/efficient_frontier.py
View file @
a8ec611a
...
@@ -375,7 +375,7 @@ class EfficientFrontier(base_optimizer.BaseConvexOptimizer):
...
@@ -375,7 +375,7 @@ class EfficientFrontier(base_optimizer.BaseConvexOptimizer):
return
self
.
_solve_cvxpy_opt_problem
()
return
self
.
_solve_cvxpy_opt_problem
()
def
efficient_return
(
self
,
target_return
,
market_neutral
=
False
):
def
efficient_return
(
self
,
target_return
,
target_drawdown
,
market_neutral
=
False
):
"""
"""
Calculate the 'Markowitz portfolio', minimising volatility for a given target return.
Calculate the 'Markowitz portfolio', minimising volatility for a given target return.
...
@@ -405,12 +405,13 @@ class EfficientFrontier(base_optimizer.BaseConvexOptimizer):
...
@@ -405,12 +405,13 @@ class EfficientFrontier(base_optimizer.BaseConvexOptimizer):
self
.
objective
=
cp
.
quad_form
(
self
.
_w
,
self
.
cov_matrix
)
self
.
objective
=
cp
.
quad_form
(
self
.
_w
,
self
.
cov_matrix
)
ret
=
self
.
expected_returns
.
T
@
self
.
_w
ret
=
self
.
expected_returns
.
T
@
self
.
_w
drawdown
=
self
.
expected_drawdown
.
T
@
self
.
_w
for
obj
in
self
.
_additional_objectives
:
for
obj
in
self
.
_additional_objectives
:
self
.
_objective
+=
obj
self
.
_objective
+=
obj
self
.
_constraints
.
append
(
ret
>=
target_return
)
self
.
_constraints
.
append
(
ret
>=
target_return
)
self
.
_constraints
.
append
(
drawdown
<=
target_drawdown
)
# The equality constraint is either "weights sum to 1" (default), or
# The equality constraint is either "weights sum to 1" (default), or
# "weights sum to 0" (market neutral).
# "weights sum to 0" (market neutral).
if
market_neutral
:
if
market_neutral
:
...
...
app/service/portfolio_diagnose.py
View file @
a8ec611a
...
@@ -4,6 +4,10 @@
...
@@ -4,6 +4,10 @@
@file:portfolio_diagnose.py
@file:portfolio_diagnose.py
@time:2020/12/07
@time:2020/12/07
"""
"""
import
warnings
warnings
.
filterwarnings
(
"ignore"
)
from
app.utils.fund_rank
import
*
from
app.utils.fund_rank
import
*
from
app.utils.risk_parity
import
*
from
app.utils.risk_parity
import
*
from
app.pypfopt
import
risk_models
from
app.pypfopt
import
risk_models
...
@@ -113,7 +117,7 @@ def choose_good_evaluation(evaluation):
...
@@ -113,7 +117,7 @@ def choose_good_evaluation(evaluation):
if
v1
[
0
]
>
1
:
if
v1
[
0
]
>
1
:
del
evaluation
[
1
]
del
evaluation
[
1
]
if
v2
[
0
]
>
1
:
if
v2
[
0
]
>
1
and
float
(
v2
[
1
]
.
strip
(
'
%
'
))
<=
60
:
del
evaluation
[
2
]
del
evaluation
[
2
]
if
v3
[
0
]
>
1
:
if
v3
[
0
]
>
1
:
del
evaluation
[
3
]
del
evaluation
[
3
]
...
@@ -331,8 +335,8 @@ tamp_fund = get_tamp_fund()
...
@@ -331,8 +335,8 @@ tamp_fund = get_tamp_fund()
class
PortfolioDiagnose
(
object
):
class
PortfolioDiagnose
(
object
):
def
__init__
(
self
,
client_type
,
portfolio
,
invest_amount
,
expect_return
=
0.
2
,
def
__init__
(
self
,
client_type
,
portfolio
,
invest_amount
,
expect_return
=
0.
1
,
expect_drawdown
=
0.1
,
index_id
=
'000905.SH'
,
invest_type
=
'private'
,
start_date
=
None
,
end_date
=
None
):
expect_drawdown
=
0.1
5
,
index_id
=
'000905.SH'
,
invest_type
=
'private'
,
start_date
=
None
,
end_date
=
None
):
"""基金诊断
"""基金诊断
Args:
Args:
...
@@ -386,6 +390,7 @@ class PortfolioDiagnose(object):
...
@@ -386,6 +390,7 @@ class PortfolioDiagnose(object):
prod
=
get_tamp_nav
(
self
.
portfolio
[
0
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
prod
=
get_tamp_nav
(
self
.
portfolio
[
0
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
fund_info
=
get_fund_info
(
self
.
end_date
,
invest_type
=
self
.
invest_type
)
fund_info
=
get_fund_info
(
self
.
end_date
,
invest_type
=
self
.
invest_type
)
# while prod is None or prod.index[-1] - prod.index[0] < 0.6 * (self.end_date - self.start_date):
while
prod
is
None
:
while
prod
is
None
:
# 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
# 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
self
.
portfolio
[
0
]]
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
self
.
portfolio
[
0
]]
...
@@ -412,7 +417,8 @@ class PortfolioDiagnose(object):
...
@@ -412,7 +417,8 @@ class PortfolioDiagnose(object):
for
idx
in
range
(
len
(
self
.
portfolio
)
-
1
):
for
idx
in
range
(
len
(
self
.
portfolio
)
-
1
):
prod1
=
get_tamp_nav
(
self
.
portfolio
[
idx
+
1
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
prod1
=
get_tamp_nav
(
self
.
portfolio
[
idx
+
1
],
self
.
start_date
,
invest_type
=
self
.
invest_type
)
if
prod1
is
None
or
prod1
.
index
[
-
1
]
-
prod1
.
index
[
0
]
<
0.6
*
(
self
.
end_date
-
self
.
start_date
):
# if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
if
prod1
is
None
:
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
self
.
portfolio
[
idx
+
1
]]
result
=
fund_info
[
fund_info
[
'fund_id'
]
==
self
.
portfolio
[
idx
+
1
]]
if
result
[
'fund_manager_id'
]
.
count
()
!=
0
:
if
result
[
'fund_manager_id'
]
.
count
()
!=
0
:
...
@@ -442,6 +448,7 @@ class PortfolioDiagnose(object):
...
@@ -442,6 +448,7 @@ class PortfolioDiagnose(object):
prod
.
sort_index
(
inplace
=
True
)
prod
.
sort_index
(
inplace
=
True
)
prod
.
ffill
(
inplace
=
True
)
prod
.
ffill
(
inplace
=
True
)
prod
=
resample
(
prod
,
get_trade_cal
(),
min
(
self
.
freq_list
))
prod
=
resample
(
prod
,
get_trade_cal
(),
min
(
self
.
freq_list
))
prod
.
dropna
(
how
=
'any'
,
inplace
=
True
)
return
prod
return
prod
def
abandon
(
self
,
prod
):
def
abandon
(
self
,
prod
):
...
@@ -454,8 +461,8 @@ class PortfolioDiagnose(object):
...
@@ -454,8 +461,8 @@ class PortfolioDiagnose(object):
"""
"""
self
.
old_correlation
=
cal_correlation
(
prod
)
self
.
old_correlation
=
cal_correlation
(
prod
)
for
fund
in
prod
.
columns
:
for
fund
in
prod
.
columns
:
print
(
fund
)
z_score
=
search_rank
(
fund_rank
,
fund
,
metric
=
'z_score'
)
z_score
=
search_rank
(
fund_rank
,
fund
,
metric
=
'z_score'
)
# 建议替换得分为60或与其他基金相关度大于0.8的基金
# 建议替换得分为60或与其他基金相关度大于0.8的基金
if
z_score
<
60
:
if
z_score
<
60
:
...
@@ -483,32 +490,35 @@ class PortfolioDiagnose(object):
...
@@ -483,32 +490,35 @@ class PortfolioDiagnose(object):
# 组合内已包含的策略
# 组合内已包含的策略
# included_strategy = set()
# included_strategy = set()
# 按每种基金最少投资100w确定组合包含的最大基金数量
# 按每种基金最少投资100w确定组合包含的最大基金数量
max_len
=
self
.
invest_amount
//
1e6
-
len
(
prod
.
columns
)
max_len
=
len
(
self
.
portfolio
)
-
len
(
prod
.
columns
)
# 排名表内包含的所有策略
# 排名表内包含的所有策略
# all_strategy = set(fund_rank['substrategy'].to_list())
# all_strategy = set(fund_rank['substrategy'].to_list())
# if prod is not None:
all_risk
=
{
"H"
,
"M"
,
"L"
}
# included_strategy = set([search_rank(fund_rank, fund, metric='substrategy') for fund in prod.columns])
included_risk
=
{}
if
prod
is
not
None
:
# included_strategy = set([search_rank(fund_rank, fund, metric='substrategy') for fund in prod.columns])
included_risk
=
set
([
get_risk_level
(
search_rank
(
fund_rank
,
fund
,
metric
=
'substrategy'
))
for
fund
in
prod
.
columns
])
# 待添加策略为所有策略-组合已包含策略
# 待添加策略为所有策略-组合已包含策略
# add_strategy = all_strategy - included_strategy
# add_strategy = all_strategy - included_strategy
add_risk
=
all_risk
-
included_risk
# 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金
# 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金
for
proposal
in
tamp_fund
[
'fund_id'
]:
for
proposal
in
tamp_fund
[
'fund_id'
]:
if
proposal
in
fund_rank
[
'fund_id'
]
.
to_list
()
and
proposal
not
in
prod
.
columns
:
if
proposal
in
fund_rank
[
'fund_id'
]
.
to_list
():
proposal_z_score
=
search_rank
(
fund_rank
,
proposal
,
metric
=
'z_score'
)
proposal_z_score
=
search_rank
(
fund_rank
,
proposal
,
metric
=
'z_score'
)
#
proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
proposal_strategy
=
fund_rank
[
fund_rank
[
'fund_id'
]
==
proposal
][
'substrategy'
]
.
values
[
0
]
else
:
else
:
continue
continue
# if proposal_z_score > 80 and proposal_strategy in add_strategy:
if
proposal_z_score
>
60
and
(
get_risk_level
(
proposal_strategy
)
in
add_risk
or
not
add_risk
):
if
proposal_z_score
>
60
:
# if proposal_z_score > 80:
proposal_nav
=
get_tamp_nav
(
proposal
,
self
.
start_date
,
invest_type
=
self
.
invest_type
)
proposal_nav
=
get_tamp_nav
(
proposal
,
self
.
start_date
,
invest_type
=
self
.
invest_type
)
# 忽略净值周期大于周更的产品
# 忽略净值周期大于周更的产品
if
get_frequency
(
proposal_nav
)
<=
52
:
#
if get_frequency(proposal_nav) <= 52:
continue
#
continue
self
.
freq_list
.
append
(
get_frequency
(
proposal_nav
))
self
.
freq_list
.
append
(
get_frequency
(
proposal_nav
))
proposal_nav
=
rename_col
(
proposal_nav
,
proposal
)
proposal_nav
=
rename_col
(
proposal_nav
,
proposal
)
...
@@ -517,7 +527,6 @@ class PortfolioDiagnose(object):
...
@@ -517,7 +527,6 @@ class PortfolioDiagnose(object):
prod
=
pd
.
merge
(
prod
,
proposal_nav
,
how
=
'outer'
,
on
=
'end_date'
)
.
astype
(
float
)
prod
=
pd
.
merge
(
prod
,
proposal_nav
,
how
=
'outer'
,
on
=
'end_date'
)
.
astype
(
float
)
prod
.
sort_index
(
inplace
=
True
)
prod
.
sort_index
(
inplace
=
True
)
prod
.
ffill
(
inplace
=
True
)
prod
.
ffill
(
inplace
=
True
)
prod
.
bfill
(
inplace
=
True
)
prod
=
resample
(
prod
,
get_trade_cal
(),
min
(
self
.
freq_list
))
prod
=
resample
(
prod
,
get_trade_cal
(),
min
(
self
.
freq_list
))
self
.
new_correlation
=
cal_correlation
(
prod
)
self
.
new_correlation
=
cal_correlation
(
prod
)
...
@@ -526,14 +535,15 @@ class PortfolioDiagnose(object):
...
@@ -526,14 +535,15 @@ class PortfolioDiagnose(object):
if
np
.
all
(
judge_correlation
<
0.8
):
if
np
.
all
(
judge_correlation
<
0.8
):
self
.
proposal_fund
.
append
(
proposal
)
self
.
proposal_fund
.
append
(
proposal
)
max_len
-=
1
max_len
-=
1
# add_strategy -= {proposal_strategy}
# add_strategy -= {proposal_strategy}
add_risk
-=
{
get_risk_level
(
proposal_strategy
)}
# if len(add_strategy) == 0 or max_len == 0:
# if len(add_strategy) == 0 or max_len == 0:
if
max_len
==
0
:
if
max_len
==
0
:
break
break
else
:
else
:
prod
.
drop
(
columns
=
proposal
,
inplace
=
True
)
prod
.
drop
(
columns
=
proposal
,
inplace
=
True
)
prod
.
dropna
(
how
=
'all'
,
inplace
=
True
)
self
.
new_correlation
=
self
.
new_correlation
.
fillna
(
1
)
.
round
(
2
)
self
.
new_correlation
=
self
.
new_correlation
.
fillna
(
1
)
.
round
(
2
)
self
.
new_correlation
.
columns
=
self
.
new_correlation
.
columns
.
map
(
lambda
x
:
get_fund_name
(
x
)
.
values
[
0
][
0
])
self
.
new_correlation
.
columns
=
self
.
new_correlation
.
columns
.
map
(
lambda
x
:
get_fund_name
(
x
)
.
values
[
0
][
0
])
self
.
new_correlation
.
index
=
self
.
new_correlation
.
index
.
map
(
lambda
x
:
get_fund_name
(
x
)
.
values
[
0
][
0
])
self
.
new_correlation
.
index
=
self
.
new_correlation
.
index
.
map
(
lambda
x
:
get_fund_name
(
x
)
.
values
[
0
][
0
])
...
@@ -572,32 +582,32 @@ class PortfolioDiagnose(object):
...
@@ -572,32 +582,32 @@ class PortfolioDiagnose(object):
propose_risk_mapper
[
fund
]
=
str
(
get_risk_level
(
search_rank
(
fund_rank
,
fund
,
metric
=
'substrategy'
)))
propose_risk_mapper
[
fund
]
=
str
(
get_risk_level
(
search_rank
(
fund_rank
,
fund
,
metric
=
'substrategy'
)))
if
self
.
client_type
==
1
:
if
self
.
client_type
==
1
:
risk_upper
=
{
"
H"
:
1
.0
}
risk_upper
=
{
"
L"
:
0.6
,
"M"
:
0.4
,
"H"
:
0
.0
}
risk_lower
=
{
"L"
:
0.0
}
risk_lower
=
{
"L"
:
0.
6
,
"M"
:
0.4
,
"H"
:
0.
0
}
elif
self
.
client_type
==
2
:
elif
self
.
client_type
==
2
:
risk_upper
=
{
"
H"
:
1.0
}
risk_upper
=
{
"
L"
:
0.5
,
"M"
:
0.3
,
"H"
:
0.2
}
risk_lower
=
{
"L"
:
0.
0
}
risk_lower
=
{
"L"
:
0.
5
,
"M"
:
0.3
,
"H"
:
0.2
}
elif
self
.
client_type
==
3
:
elif
self
.
client_type
==
3
:
risk_upper
=
{
"
H"
:
1.0
}
risk_upper
=
{
"
L"
:
0.3
,
"M"
:
0.5
,
"H"
:
0.2
}
risk_lower
=
{
"L"
:
0.
0
}
risk_lower
=
{
"L"
:
0.
3
,
"M"
:
0.5
,
"H"
:
0.2
}
elif
self
.
client_type
==
4
:
elif
self
.
client_type
==
4
:
risk_upper
=
{
"
H"
:
1.0
}
risk_upper
=
{
"
L"
:
0.3
,
"M"
:
0.4
,
"H"
:
0.3
}
risk_lower
=
{
"L"
:
0.
0
}
risk_lower
=
{
"L"
:
0.
3
,
"M"
:
0.4
,
"H"
:
0.3
}
elif
self
.
client_type
==
5
:
elif
self
.
client_type
==
5
:
risk_upper
=
{
"
H"
:
1.0
}
risk_upper
=
{
"
L"
:
0.0
,
"M"
:
0.5
,
"H"
:
0.5
}
risk_lower
=
{
"L"
:
0.0
}
risk_lower
=
{
"L"
:
0.0
,
"M"
:
0.5
,
"H"
:
0.5
}
else
:
else
:
risk_upper
=
{
"H"
:
1.0
}
risk_upper
=
{
"H"
:
1.0
}
risk_lower
=
{
"L"
:
0.0
}
risk_lower
=
{
"L"
:
0.0
}
raise
ValueError
raise
ValueError
w_low
=
1000000
/
self
.
invest_amount
w_low
=
1000000
/
self
.
invest_amount
#
ef = EfficientFrontier(mu, S, weight_bounds=[w_low, 1], expected_drawdown=dd)
ef
=
EfficientFrontier
(
mu
,
S
,
weight_bounds
=
[
w_low
,
1
],
expected_drawdown
=
dd
)
ef
=
EfficientFrontier
(
mu
,
S
,
weight_bounds
=
[
0
,
1
],
expected_drawdown
=
dd
)
#
ef = EfficientFrontier(mu, S, weight_bounds=[0, 1], expected_drawdown=dd)
ef
.
add_sector_constraints
(
propose_risk_mapper
,
risk_lower
,
risk_upper
)
ef
.
add_sector_constraints
(
propose_risk_mapper
,
risk_lower
,
risk_upper
)
ef
.
efficient_return
(
target_return
=
self
.
expect_return
)
ef
.
efficient_return
(
target_return
=
self
.
expect_return
,
target_drawdown
=
self
.
expect_drawdown
)
clean_weights
=
ef
.
clean_weights
()
clean_weights
=
ef
.
clean_weights
()
#
ef.portfolio_performance(verbose=True)
ef
.
portfolio_performance
(
verbose
=
True
)
self
.
new_weights
=
np
.
array
(
list
(
clean_weights
.
values
()))
self
.
new_weights
=
np
.
array
(
list
(
clean_weights
.
values
()))
print
(
clean_weights
)
print
(
clean_weights
)
end4
=
time
.
time
()
end4
=
time
.
time
()
...
@@ -927,7 +937,7 @@ class PortfolioDiagnose(object):
...
@@ -927,7 +937,7 @@ class PortfolioDiagnose(object):
index_return_monthly
.
index
=
index_return_monthly
.
index
.
strftime
(
'
%
Y-
%
m'
)
index_return_monthly
.
index
=
index_return_monthly
.
index
.
strftime
(
'
%
Y-
%
m'
)
fund_return_monthly
.
index
=
fund_return_monthly
.
index
.
strftime
(
'
%
Y-
%
m'
)
fund_return_monthly
.
index
=
fund_return_monthly
.
index
.
strftime
(
'
%
Y-
%
m'
)
compare
=
pd
.
merge
(
index_return_monthly
,
fund_return_monthly
,
how
=
'inner'
,
left_index
=
True
,
right_index
=
True
)
compare
=
pd
.
merge
(
index_return_monthly
,
fund_return_monthly
,
how
=
'inner'
,
left_index
=
True
,
right_index
=
True
)
fund_win_rate
=
((
compare
[
fund_id
]
-
compare
[
'pct_chg'
])
>
0
)
.
sum
()
fund_win_rate
=
((
compare
[
fund_id
]
-
compare
[
'pct_chg'
])
>
0
)
.
sum
()
/
compare
[
fund_id
]
.
count
()
return_rank
=
search_rank
(
fund_rank
,
fund_id
,
metric
=
'annual_return_rank'
)
return_rank
=
search_rank
(
fund_rank
,
fund_id
,
metric
=
'annual_return_rank'
)
return_level
=
np
.
select
([
return_rank
>=
0.8
,
return_level
=
np
.
select
([
return_rank
>=
0.8
,
...
@@ -952,7 +962,7 @@ class PortfolioDiagnose(object):
...
@@ -952,7 +962,7 @@ class PortfolioDiagnose(object):
sharp_rank
<
0.6
],
[
0
,
1
,
2
])
.
item
()
sharp_rank
<
0.6
],
[
0
,
1
,
2
])
.
item
()
data
=
{
1
:
[
total_level
,
return_level
,
drawdown_level
,
sharp_level
],
data
=
{
1
:
[
total_level
,
return_level
,
drawdown_level
,
sharp_level
],
2
:
[
return_triple
,
str
(
fund_win_rate
),
return_bool
],
2
:
[
return_triple
,
format
(
fund_win_rate
,
'.2
%
'
),
return_bool
],
3
:
[
drawdown_triple
,
drawdown_triple
,
format
(
drawdown_value
,
'.2
%
'
),
drawdown_triple
],
3
:
[
drawdown_triple
,
drawdown_triple
,
format
(
drawdown_value
,
'.2
%
'
),
drawdown_triple
],
4
:
[
return_bool
,
drawdown_bool
,
drawdown_bool
,
return_bool
,
drawdown_bool
]}
4
:
[
return_bool
,
drawdown_bool
,
drawdown_bool
,
return_bool
,
drawdown_bool
]}
...
@@ -989,7 +999,7 @@ class PortfolioDiagnose(object):
...
@@ -989,7 +999,7 @@ class PortfolioDiagnose(object):
sentence
=
{
sentence
=
{
1
:
"该基金整体表现
%
s,收益能力
%
s,回撤控制能力
%
s,风险收益比例
%
s;
\n
"
,
1
:
"该基金整体表现
%
s,收益能力
%
s,回撤控制能力
%
s,风险收益比例
%
s;
\n
"
,
2
:
"在收益方面,该基金年化收益能力
%
s同类基金平均水平,有
%
s
个
区间跑赢指数,绝对收益能力
%
s;
\n
"
,
2
:
"在收益方面,该基金年化收益能力
%
s同类基金平均水平,有
%
s区间跑赢指数,绝对收益能力
%
s;
\n
"
,
3
:
"在风险方面,该基金抵御风险能力
%
s,在同类基金中处于
%
s等水平,最大回撤为
%
s,
%
s同类基金平均水平;
\n
"
,
3
:
"在风险方面,该基金抵御风险能力
%
s,在同类基金中处于
%
s等水平,最大回撤为
%
s,
%
s同类基金平均水平;
\n
"
,
4
:
"该基金收益
%
s的同时回撤
%
s,也就是说,该基金在用
%
s风险换取
%
s收益,存在
%
s风险;
\n
"
,
4
:
"该基金收益
%
s的同时回撤
%
s,也就是说,该基金在用
%
s风险换取
%
s收益,存在
%
s风险;
\n
"
,
5
:
"基金经理,投资年限
%
s年,经验丰富;投资能力较强,生涯中共管理过
%
s只基金,历任的
%
s只基金平均业绩在同类中处于上游水平,其中
%
s只排名在前
%
s;生涯年化回报率
%
s,同期大盘只有
%
s;"
}
5
:
"基金经理,投资年限
%
s年,经验丰富;投资能力较强,生涯中共管理过
%
s只基金,历任的
%
s只基金平均业绩在同类中处于上游水平,其中
%
s只排名在前
%
s;生涯年化回报率
%
s,同期大盘只有
%
s;"
}
...
...
app/utils/fund_rank.py
View file @
a8ec611a
...
@@ -8,7 +8,7 @@
...
@@ -8,7 +8,7 @@
import
logging
import
logging
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
from
app.api.engine
import
tamp_fund_engine
,
TAMP_SQL
from
app.api.engine
import
tamp_fund_engine
,
TAMP_SQL
,
tamp_product_engine
from
app.utils.week_evaluation
import
*
from
app.utils.week_evaluation
import
*
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment