Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Sign in
Toggle navigation
F
fund_report
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
彭熊
fund_report
Commits
70bd37f1
Commit
70bd37f1
authored
Dec 03, 2020
by
赵杰
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
新组合结果
parent
b04cf3b2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
88 additions
and
30 deletions
+88
-30
portfolio_diagnose.py
app/service/portfolio_diagnose.py
+87
-29
result_service.py
app/service/result_service.py
+1
-1
No files found.
app/service/portfolio_diagnose.py
View file @
70bd37f1
# -*- coding: UTF-8 -*-
# """
# @author: Zongxi.Li
# @file:portfolio_copy.py
# @time:2020/12/03
# """
from
app.utils.fund_rank
import
*
from
app.utils.risk_parity
import
*
from
app.pypfopt
import
risk_models
...
...
@@ -547,17 +541,17 @@ class PortfolioDiagnose(object):
past_month
=
(
current_year
-
start_year
)
*
12
+
current_month
-
start_month
# 投入成本(万元)
input_cost
=
round
(
group_result
[
group_name
][
"total_cost"
]
/
10000
,
2
)
input_cost
=
round
(
group_result
[
group_name
][
"total_cost"
]
/
10000
,
2
)
# 整体盈利(万元)
total_profit
=
round
(
group_result
[
group_name
][
"cumulative_profit"
]
/
10000
,
2
)
total_profit
=
round
(
group_result
[
group_name
][
"cumulative_profit"
]
/
10000
,
2
)
# 整体表现 回撤能力
fund_rank_data
=
fund_rank
[
fund_rank
[
"fund_id"
]
.
isin
(
self
.
portfolio
)]
z_score
=
fund_rank_data
[
"z_score"
]
.
mean
()
drawdown_rank
=
fund_rank_data
[
"max_drawdown_rank"
]
.
mean
()
return_rank_df
=
fund_rank_data
[
"annual_return_rank"
]
z_score_level
=
np
.
select
([
z_score
>=
80
,
70
<=
z_score
<
80
,
z_score
<
70
],
[
0
,
1
,
2
])
.
item
()
70
<=
z_score
<
80
,
z_score
<
70
],
[
0
,
1
,
2
])
.
item
()
drawdown_level
=
np
.
select
([
drawdown_rank
>=
0.8
,
0.7
<=
drawdown_rank
<
0.8
,
0.6
<=
drawdown_rank
<
0.7
,
...
...
@@ -569,14 +563,13 @@ class PortfolioDiagnose(object):
num
=
len
(
fund_rank_re
)
fund_id_rank_list
=
list
(
fund_rank_re
[
"fund_id"
])
for
f_id
in
fund_id_rank_list
:
name
=
data_adaptor
.
user_customer_order_df
[
data_adaptor
.
user_customer_order_df
[
"fund_id"
]
==
f_id
][
"fund_name"
]
.
values
[
0
]
name
=
data_adaptor
.
user_customer_order_df
[
data_adaptor
.
user_customer_order_df
[
"fund_id"
]
==
f_id
][
"fund_name"
]
.
values
[
0
]
return_rank_evaluate
=
return_rank_evaluate
+
name
+
"、"
return_rank_evaluate
=
return_rank_evaluate
[:
-
1
]
+
"等"
+
str
(
num
)
+
"只产品稳健,对组合的收益率贡献明显,"
return_rank_evaluate
=
return_rank_evaluate
[:
-
1
]
+
"等"
+
str
(
num
)
+
"只产品稳健,对组合的收益率贡献明显,"
# 正收益基金数量
group_hold_data
=
pd
.
DataFrame
(
group_result
[
group_name
][
"group_hoding_info"
])
profit_positive_num
=
group_hold_data
[
group_hold_data
[
"profit"
]
>
0
][
"profit"
]
.
count
()
profit_positive_num
=
group_hold_data
[
group_hold_data
[
"profit"
]
>
0
][
"profit"
]
.
count
()
if
profit_positive_num
>
0
:
profit_positive_evaluate
=
str
(
profit_positive_num
)
+
"只基金取的正收益,"
else
:
...
...
@@ -592,29 +585,28 @@ class PortfolioDiagnose(object):
else
:
no_data_fund_evaluate
=
";"
group_order_df
=
data_adaptor
.
user_customer_order_df
[
data_adaptor
.
user_customer_order_df
[
"folio_name"
]
==
group_name
]
group_order_df
=
data_adaptor
.
user_customer_order_df
[
data_adaptor
.
user_customer_order_df
[
"folio_name"
]
==
group_name
]
strategy_list
=
group_order_df
[
"substrategy"
]
uniqe_strategy
=
list
(
strategy_list
.
unique
())
uniqe_strategy_name
=
[
dict_substrategy
[
int
(
x
)]
+
"、"
for
x
in
uniqe_strategy
]
# 覆盖的基金名称
strategy_name_evaluate
=
""
.
join
(
uniqe_strategy_name
)[:
-
1
]
if
len
(
uniqe_strategy
)
/
float
(
len
(
strategy_list
))
>
0.6
:
if
len
(
uniqe_strategy
)
/
float
(
len
(
strategy_list
))
>
0.6
:
strategy_distribution_evaluate
=
"策略上有一定分散"
else
:
strategy_distribution_evaluate
=
"策略分散程度不高"
# 相关性
if
len
(
self
.
abandon_fund_corr
)
>
0
:
fund_corr_name
=
[
str
(
group_order_df
[
group_order_df
[
"fund_id"
]
==
f_id
][
"fund_name"
]
.
values
[
0
])
+
"和"
for
f_id
in
self
.
abandon_fund_corr
]
fund_corr_name
=
[
str
(
group_order_df
[
group_order_df
[
"fund_id"
]
==
f_id
][
"fund_name"
]
.
values
[
0
])
+
"和"
for
f_id
in
self
.
abandon_fund_corr
]
fund_corr_evaluate
=
""
.
join
(
fund_corr_name
)[:
-
1
]
+
"相关性较高,建议调整组合配比;"
else
:
fund_corr_evaluate
=
";"
num_fund
=
len
(
self
.
portfolio
)
evaluate_enum
=
[[
"优秀"
,
"良好"
,
"一般"
],
[
"优秀"
,
"良好"
,
"合格"
,
"较差"
]]
[
"优秀"
,
"良好"
,
"合格"
,
"较差"
]]
z_score_evaluate
=
evaluate_enum
[
0
][
z_score_level
]
drawdown_evaluate
=
evaluate_enum
[
1
][
drawdown_level
]
...
...
@@ -648,9 +640,13 @@ class PortfolioDiagnose(object):
group_result_data
=
group_result
[
group_name
]
hold_info
=
group_result_data
[
"group_hoding_info"
]
hold_info_df
=
pd
.
DataFrame
(
hold_info
)
group_order_df
=
data_adaptor
.
user_customer_order_df
[
data_adaptor
.
user_customer_order_df
[
"folio_name"
]
==
group_name
]
group_order_start_date
=
pd
.
to_datetime
(
group_order_df
[
"confirm_share_date"
]
.
min
())
# 原组合总市值, 区间收益, 年化收益, 波动率, 最大回撤, 夏普比率
total_asset
=
round
(
pd
.
DataFrame
(
hold_info
)
[
"market_values"
]
.
sum
(),
2
)
total_asset
=
round
(
hold_info_df
[
"market_values"
]
.
sum
(),
2
)
old_return
=
group_result_data
[
"cumulative_return"
]
old_return_ratio_year
=
group_result_data
[
"return_ratio_year"
]
old_volatility
=
group_result_data
[
"volatility"
]
...
...
@@ -668,15 +664,77 @@ class PortfolioDiagnose(object):
data
=
cur
.
fetchall
()
product_df
=
pd
.
DataFrame
(
list
(
data
),
columns
=
[
'fund_id'
,
'fund_name'
,
'freq'
,
'substrategy'
])
propose_fund_df
=
product_df
[
product_df
[
"fund_id"
]
.
isin
(
propose_fund_id_list
)]
propose_fund_id_list_name
=
[]
# 基金名称,策略分级
sentence
=
"在保留{}的基础上,建议赎回{},并增配{}后,整体组合波动率大幅降低,最大回撤从{}降到不足{},年化收益率提升{}个点"
hold_fund
=
""
.
join
(
set
(
self
.
portfolio
)
-
set
(
self
.
abandon_fund_score
+
self
.
abandon_fund_corr
))
abandon_fund
=
""
.
join
(
self
.
abandon_fund_score
+
self
.
abandon_fund_corr
)
proposal_fund
=
""
.
join
(
self
.
proposal_fund
)
data
=
[
hold_fund
,
abandon_fund
,
proposal_fund
,
old_max_drawdown
]
return
sentence
%
data
# 基金名称,策略分级
propose_fund_id_name_list
=
[
propose_fund_df
[
propose_fund_df
[
"fund_id"
]
==
fund_id
][
"fund_name"
]
.
values
[
0
]
for
fund_id
in
propose_fund_id_list
]
propose_fund_id_strategy_name_list
=
[
dict_substrategy
[
int
(
propose_fund_df
[
propose_fund_df
[
"fund_id"
]
==
fund_id
][
"substrategy"
]
.
values
[
0
])]
for
fund_id
in
propose_fund_id_list
]
propose_fund_asset
=
[
round
(
self
.
new_weights
[
i
]
*
total_asset
,
2
)
for
i
in
range
(
len
(
propose_fund_id_name_list
))]
propose_info
=
{
propose_fund_id_strategy_name_list
[
i
]:
{
"fund_name"
:
propose_fund_id_name_list
[
i
],
"substrategy"
:
propose_fund_id_strategy_name_list
[
i
],
"asset"
:
propose_fund_asset
[
i
]}
for
i
in
range
(
len
(
propose_fund_id_list
))}
# 调仓建议
suggestions_result
=
{}
old_hold_fund_name_list
=
list
(
hold_info_df
[
"fund_name"
])
for
hold
in
hold_info
:
suggestions
=
{}
if
hold
[
"fund_strategy_name"
]
not
in
suggestions_result
.
keys
():
suggestions_result
[
hold
[
"fund_strategy_name"
]]
=
{}
suggestions
[
"fund_strategy_name"
]
=
hold
[
"fund_strategy_name"
]
suggestions
[
"fund_name"
]
=
hold
[
"fund_name"
]
suggestions
[
"before_optimization"
]
=
hold
[
"market_values"
]
suggestions
[
"after_optimization"
]
=
0
if
suggestions
[
"fund_strategy_name"
]
in
propose_fund_id_strategy_name_list
:
suggestions
[
"after_optimization"
]
=
0
suggestions_result
[
hold
[
"fund_strategy_name"
]][
suggestions
[
"fund_name"
]]
=
suggestions
for
key
,
value
in
propose_info
.
items
():
if
value
[
"fund_name"
]
not
in
old_hold_fund_name_list
:
suggestions
=
{}
if
key
not
in
suggestions_result
.
keys
():
suggestions_result
[
key
]
=
{}
suggestions
[
"fund_strategy_name"
]
=
value
[
"substrategy"
]
suggestions
[
"fund_name"
]
=
value
[
"fund_name"
]
suggestions
[
"before_optimization"
]
=
0
suggestions
[
"after_optimization"
]
=
value
[
"asset"
]
suggestions_result
[
key
][
suggestions
[
"fund_name"
]]
=
suggestions
suggestions_result_asset
=
{
"before"
:
total_asset
,
"after"
:
total_asset
}
# 旧组合累积收益
old_return_df
=
group_result_data
[
"return_df"
]
old_return_df
[
"cum_return_ratio"
]
=
old_return_df
[
"cum_return_ratio"
]
-
1
# 新组合累积收益
propose_fund_return_limit_data
=
propose_fund_return
[
propose_fund_return
.
index
>=
group_order_start_date
]
start_return
=
propose_fund_return_limit_data
[
'return'
]
.
values
[
0
]
propose_fund_return_limit_data
[
"new_return"
]
=
(
propose_fund_return_limit_data
[
"return"
]
-
start_return
)
/
(
1
+
start_return
)
# 指数收益
index_return
=
index_return
[
index_return
.
index
>=
group_order_start_date
]
start_index_return
=
index_return
[
self
.
index_id
]
.
values
[
0
]
index_return
[
"new_index_return"
]
=
(
index_return
[
self
.
index_id
]
-
start_index_return
)
/
(
1
+
start_index_return
)
# 新组合区间年化收益率
freq_max
=
group_order_df
[
"freq"
]
.
max
()
n_freq
=
freq_days
(
int
(
freq_max
))
new_return_ratio_year
=
annual_return
(
propose_fund_return_limit_data
[
"new_return"
]
.
values
[
-
1
],
propose_fund_return_limit_data
,
n_freq
)
# 新组合波动率
new_volatility_
=
volatility
(
propose_fund_return_limit_data
[
"new_return"
]
+
1
,
n_freq
)
# 新组合最大回撤
new_drawdown
=
max_drawdown
(
propose_fund_return_limit_data
[
"new_return"
]
+
1
)
# 新组合夏普比率
sim
=
simple_return
(
propose_fund_return_limit_data
[
"new_return"
]
+
1
)
exc
=
excess_return
(
sim
,
BANK_RATE
,
n_freq
)
new_sharpe
=
sharpe_ratio
(
exc
,
sim
,
n_freq
)
return
suggestions_result
,
suggestions_result_asset
def
single_evaluation
(
self
,
fund_id
):
"""
...
...
app/service/result_service.py
View file @
70bd37f1
...
...
@@ -159,7 +159,7 @@ class UserCustomerResultAdaptor(UserCustomerDataAdaptor):
index_result
=
self
.
signal_fund_profit_result
(
index_df
[
index_df
.
index
>=
pd
.
to_datetime
(
first_trade_date
)],
"index"
)
folio_report_data
[
"index_result"
]
=
index_result
folio_report_data
[
"return_df"
]
=
resample_df
self
.
group_result_data
[
folio
]
=
folio_report_data
return
self
.
group_result_data
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment