Commit 4a65db78 authored by 赵杰's avatar 赵杰

修复250

parent 1a70948f
......@@ -715,17 +715,6 @@ class PortfolioDiagnose(object):
propose_fund_return_limit_data = propose_fund_return[propose_fund_return.index >= group_order_start_date]
start_return = propose_fund_return_limit_data['return'].values[0]
propose_fund_return_limit_data["new_return"] = (propose_fund_return_limit_data["return"] - start_return)/(1+start_return)
# 指数收益
index_return = index_return[index_return.index >= group_order_start_date]
start_index_return = index_return[" close"].values[0]
index_return["new_index_return"] = (index_return[" close"] - start_index_return) / (1 + start_index_return)
index_return_ratio = index_return["new_index_return"].values[-1]
index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], 250)
index_volatility = volatility(index_return["new_index_return"]+1, 250)
index_drawdown = max_drawdown(index_return["new_index_return"]+1)
index_sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
index_exc = excess_return(index_sim, BANK_RATE, 250)
index_sharpe = sharpe_ratio(index_exc, index_sim, 250)
# 新组合累积收益
new_return_ratio = propose_fund_return_limit_data["new_return"].values[-1]
......@@ -745,6 +734,17 @@ class PortfolioDiagnose(object):
exc = excess_return(sim, BANK_RATE, n_freq)
new_sharpe = sharpe_ratio(exc, sim, n_freq)
# 指数收益
index_return = index_return[index_return.index >= group_order_start_date]
start_index_return = index_return[" close"].values[0]
index_return["new_index_return"] = (index_return[" close"] - start_index_return) / (1 + start_index_return)
index_return_ratio = index_return["new_index_return"].values[-1]
index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], n_freq)
index_volatility = volatility(index_return["new_index_return"]+1, n_freq)
index_drawdown = max_drawdown(index_return["new_index_return"]+1)
index_sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
index_exc = excess_return(index_sim, BANK_RATE, n_freq)
index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
# 收益对比数据
return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]], right_index=True,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment