Commit 39a9a9d0 authored by 李宗熹's avatar 李宗熹

评价修改

parent fc60482a
......@@ -57,6 +57,18 @@ tamp_user_engine = create_engine(
),
echo=True
)
tamp_fund_engine = create_engine(
'mysql+pymysql://{user}:{password}@{host}:{port}/{db}?charset={charset}'.format(
db=config[env]['MySQL']['tamp_fund_db'],
host=config[env]['MySQL']['host'],
port=config[env]['MySQL']['port'],
user=config[env]['MySQL']['user'],
password=config[env]['MySQL']['password'],
charset="utf8"
),
echo=True
)
# tamp_product_session = scoped_session(sessionmaker(bind=tamp_product_engine))()
# tamp_order_session = scoped_session(sessionmaker(bind=tamp_order_engine))()
# tamp_user_session = scoped_session(sessionmaker(bind=tamp_user_engine))()
......
......@@ -43,6 +43,7 @@ prod:
tamp_product_db: tamp_product
tamp_order_db: tamp_order
tamp_user_db: tamp_user
tamp_fund_db: tamp_fund
host: tamper.mysql.polardb.rds.aliyuncs.com
port: 3306
user: tamp_admin
......
This diff is collapsed.
# import pymysql
from sqlalchemy import create_engine
db = create_engine(
'mysql+pymysql://tamp_fund:@imeng408@tamper.mysql.polardb.rds.aliyuncs.com:3306/tamp_fund?charset=utf8mb4',
pool_size=50,
pool_recycle=3600,
pool_pre_ping=True)
con = db.connect()
import logging
# db = create_engine(
# 'mysql+pymysql://tamp_fund:@imeng408@tamper.mysql.polardb.rds.aliyuncs.com:3306/tamp_fund?charset=utf8mb4',
# pool_size=50,
# pool_recycle=3600,
# pool_pre_ping=True)
# con = db.connect()
import logging
logging.basicConfig(level=logging.INFO)
from app.api.engine import tamp_fund_engine, TAMP_SQL
from app.utils.week_evaluation import *
......@@ -35,32 +36,39 @@ def get_nav(fund, start_date, rollback=False, invest_type='public'):
Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None
"""
if invest_type == 'public':
sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
"WHERE ts_code='{}'".format(fund)
df = pd.read_sql(sql, con).dropna(how='any')
df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
else:
sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
"WHERE fund_id='{}'".format(fund)
df = pd.read_sql(sql, con).dropna(how='any')
df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)
if df['adj_nav'].count() == 0:
logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
return None
df['end_date'] = pd.to_datetime(df['end_date'])
if rollback and df['end_date'].min() < start_date < df['end_date'].max():
while start_date not in list(df['end_date']):
start_date -= datetime.timedelta(days=1)
df = df[df['end_date'] >= start_date]
df.drop_duplicates(subset='end_date', inplace=True, keep='first')
df.set_index('end_date', inplace=True)
df.sort_index(inplace=True, ascending=True)
return df
with TAMP_SQL(tamp_fund_engine) as tamp_product:
tamp_product_session = tamp_product.session
if invest_type == 'public':
sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
"WHERE ts_code='{}'".format(fund)
cur = tamp_product_session.execute(sql)
data = cur.fetchall()
df = pd.DataFrame(list(data), columns=['ts_code', 'end_date', 'adj_nav']).dropna(how='any')
df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
else:
sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
"WHERE fund_id='{}'".format(fund)
# df = pd.read_sql(sql, con).dropna(how='any')
cur = tamp_product_session.execute(sql)
data = cur.fetchall()
df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)
if df['adj_nav'].count() == 0:
logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
return None
df['end_date'] = pd.to_datetime(df['end_date'])
if rollback and df['end_date'].min() < start_date < df['end_date'].max():
while start_date not in list(df['end_date']):
start_date -= datetime.timedelta(days=1)
df = df[df['end_date'] >= start_date]
df.drop_duplicates(subset='end_date', inplace=True, keep='first')
df.set_index('end_date', inplace=True)
df.sort_index(inplace=True, ascending=True)
return df
def get_frequency(df):
......@@ -97,11 +105,16 @@ def get_trade_cal():
Returns:df[DataFrame]: 索引为交易日, 列为交易日的上交所交易日历表
"""
sql = 'SELECT cal_date FROM stock_trade_cal WHERE is_open=1'
df = pd.read_sql(sql, con)
df['end_date'] = pd.to_datetime(df['cal_date'])
df.set_index('end_date', drop=False, inplace=True)
return df
with TAMP_SQL(tamp_fund_engine) as tamp_product:
tamp_product_session = tamp_product.session
sql = 'SELECT cal_date FROM stock_trade_cal WHERE is_open=1'
cur = tamp_product_session.execute(sql)
data = cur.fetchall()
df = pd.DataFrame(list(data), columns=['cal_date']).dropna(how='all')
# df = pd.read_sql(sql, con)
df['end_date'] = pd.to_datetime(df['cal_date'])
df.set_index('end_date', drop=False, inplace=True)
return df
def get_manager(invest_type):
......@@ -113,13 +126,21 @@ def get_manager(invest_type):
Returns:
"""
if invest_type == 'public':
sql = 'SELECT ts_code, name FROM public_fund_manager WHERE end_date IS NULL'
df = pd.read_sql(sql, con)
else:
sql = 'SELECT fund_id, fund_manager_id FROM fund_manager_mapping'
df = pd.read_sql(sql, con)
return df
with TAMP_SQL(tamp_fund_engine) as tamp_product:
tamp_product_session = tamp_product.session
if invest_type == 'public':
sql = 'SELECT ts_code, name FROM public_fund_manager WHERE end_date IS NULL'
# df = pd.read_sql(sql, con)
cur = tamp_product_session.execute(sql)
data = cur.fetchall()
df = pd.DataFrame(list(data), columns=['ts_code', 'name'])
else:
sql = 'SELECT fund_id, fund_manager_id FROM fund_manager_mapping'
# df = pd.read_sql(sql, con)
cur = tamp_product_session.execute(sql)
data = cur.fetchall()
df = pd.DataFrame(list(data), columns=['fund_id', 'fund_manager_id'])
return df
def get_fund_info(end_date, invest_type):
......@@ -132,23 +153,33 @@ def get_fund_info(end_date, invest_type):
Returns:
[type]: [description]
"""
if invest_type == 'public':
sql = "SELECT ts_code, fund_type, management FROM public_fund_basic " \
"WHERE delist_date IS NULL AND (due_date IS NULL OR due_date>'{}')".format(end_date.strftime('%Y%m%d'))
df = pd.read_sql(sql, con).dropna(how='all')
manager_info = get_manager(invest_type)
df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
df = pd.merge(df, manager_info, how="left", on='fund_id')
else:
sql = "SELECT id, substrategy FROM fund_info WHERE delete_tag=0 " \
"AND substrategy!=-1"
df = pd.read_sql(sql, con).dropna(how='all')
with TAMP_SQL(tamp_fund_engine) as tamp_product:
tamp_product_session = tamp_product.session
if invest_type == 'public':
sql = "SELECT ts_code, fund_type, management FROM public_fund_basic " \
"WHERE delist_date IS NULL AND (due_date IS NULL OR due_date>'{}')".format(end_date.strftime('%Y%m%d'))
# df = pd.read_sql(sql, con).dropna(how='all')
cur = tamp_product_session.execute(sql)
data = cur.fetchall()
df = pd.DataFrame(list(data), columns=['ts_code', 'fund_type', 'management'])
manager_info = get_manager(invest_type)
df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
df = pd.merge(df, manager_info, how="left", on='fund_id')
else:
df.rename({'id': 'fund_id'}, axis=1, inplace=True)
manager_info = get_manager(invest_type)
df = pd.merge(df, manager_info, how="inner", on='fund_id')
return df
sql = "SELECT id, substrategy FROM fund_info WHERE delete_tag=0 " \
"AND substrategy!=-1"
cur = tamp_product_session.execute(sql)
data = cur.fetchall()
df = pd.DataFrame(list(data), columns=['id', 'substrategy'])
# df = pd.read_sql(sql, con).dropna(how='all')
df.rename({'id': 'fund_id'}, axis=1, inplace=True)
manager_info = get_manager(invest_type)
df = pd.merge(df, manager_info, how="inner", on='fund_id')
return df
def resample(df, trading_cal, freq, simple_flag=True):
......@@ -301,4 +332,4 @@ if __name__ == '__main__':
# fund_rank.to_csv("fund_rank.csv", encoding='gbk')
# df = pd.read_csv('fund_rank.csv')
# df.to_sql("fund_rank", con, if_exists='replace')
con.close()
# con.close()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment