Commit 0b2a3de6 authored by 赵杰's avatar 赵杰

新组合指标计算初始化数据以及数据库操作

parent 29d64420
......@@ -3,6 +3,7 @@ from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier
from app.api.engine import tamp_user_engine, tamp_product_engine, TAMP_SQL
def cal_correlation(prod):
......@@ -598,12 +599,40 @@ class PortfolioDiagnose(object):
ret.append(sentence[k].format(*data[k]).replace(",;", ";"))
return ret
def new_evaluation(self):
hold_fund = set(self.portfolio) - set(self.abandon_fund)
abandon_fund = self.abandon_fund
proposal_fund = self.proposal_fund
data = [hold_fund, abandon_fund, proposal_fund]
return data
def new_evaluation(self, group_name, group_result, data_adaptor):
group_result_data = group_result[group_name]
hold_info = group_result_data["group_hoding_info"]
# 原组合总市值, 区间收益, 年化收益, 波动率, 最大回撤, 夏普比率
total_asset = round(pd.DataFrame(hold_info)["market_values"].sum(),2)
old_return = group_result_data["cumulative_return"]
old_return_ratio_year = group_result_data["return_ratio_year"]
old_volatility = group_result_data["volatility"]
old_max_drawdown = group_result_data["max_drawdown"]
old_sharpe = group_result_data["sharpe"]
# 建议基金数据
index_return, propose_fund_return = self.return_compare()
propose_fund_id_list = list(propose_fund_return.columns)
propose_fund_id_list.remove("return")
with TAMP_SQL(tamp_product_engine) as tamp_product:
tamp_product_session = tamp_product.session
sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
cur = tamp_product_session.execute(sql_product)
data = cur.fetchall()
product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
propose_fund_df = product_df[product_df["fund_id"].isin(propose_fund_id_list)]
propose_fund_id_list_name = [] # 基金名称,策略分级
# hold_fund = set(self.portfolio) - set(self.abandon_fund)
# abandon_fund = self.abandon_fund
# proposal_fund = self.proposal_fund
# data = [hold_fund, abandon_fund, proposal_fund]
# return data
def single_evaluation(self, fund_id):
"""
......@@ -745,8 +774,8 @@ class PortfolioDiagnose(object):
portfolio = ['HF00002JJ2', 'HF00005DBQ', 'HF0000681Q', 'HF00006693', 'HF00006AZF', 'HF00006BGS']
portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
portfolio_diagnose.optimize()
if __name__ == '__main__':
print(portfolio_diagnose.single_fund_radar())
# if __name__ == '__main__':
# print(portfolio_diagnose.single_fund_radar())
# print(portfolio_diagnose.propose_fund_radar())
# print(portfolio_diagnose.old_portfolio_evaluation())
# print('旧组合相关性:', portfolio_diagnose.old_correlation)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment