portfolio_diagnose.py 59.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
# -*- coding: UTF-8 -*-
"""
@author: Zongxi.Li
@file:portfolio_diagnose.py
@time:2020/12/07
"""
import warnings

warnings.filterwarnings("ignore")

from app.utils.fund_rank import *
from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier
from app.api.engine import tamp_product_engine, tamp_fund_engine, TAMP_SQL


def cal_correlation(prod):
    """计算组合内基金相关性

    Args:
        prod: 组合净值表:索引为日期,列名为基金ID, 内容为净值

    Returns:屏蔽基金与自身相关性的相关矩阵,因为基金与自身相关性为1,妨碍后续高相关性基金筛选的判断

    """
    prod_return = prod.iloc[:, :].apply(lambda x: simple_return(x).astype(float))
    correlation = prod_return.corr()
    correlation = correlation.round(2)
    return correlation.mask(np.eye(correlation.shape[0], dtype=np.bool_))


def rename_col(df, fund_id):
    """将列名由adj_nav改为基金ID

    Args:
        df: 原始净值表:索引为日期,列名分别为 ”fund_id“, "adj_nav", 内容为[基金ID,净值]
        fund_id: 基金ID

    Returns:删除 ”fund_id” 列, 重命名 “adj_nav” 列为基金ID的净值表

    """
    df.rename(columns={'adj_nav': fund_id}, inplace=True)
    df.drop('fund_id', axis=1, inplace=True)
    return df


def replace_fund(manager, substrategy, fund_rank):
    """查找不足半年数据的基金的替代基金

    Args:
        manager: 基金经理ID
        substrategy: 基金二级策略
        fund_rank:  基金打分排名表

    Returns: 满足相同基金经理ID下的同种二级策略的基金ID的第一个结果

    """
    df = fund_rank[(fund_rank['manager'] == manager) &
                   (fund_rank['substrategy'] == substrategy)]
    return df['fund_id'].values[0]


def search_rank(fund_rank, fund, metric):
    """查找基金在基金排名表中的指标

    Args:
        fund_rank: 基金排名表
        fund: 输入基金ID
        metric: 查找的指标名称

    Returns: 基金指标的值

    """
    if len(fund_rank[fund_rank['fund_id'] == fund]) == 0:
        now_fund = {'index': np.nan, 'fund_id': fund, 'range_return': 0.5, 'annual_return': 0.5,
                    'max_drawdown': 0.5, 'sharp_ratio': 1, 'volatility': 0.4, 'sortino_ratio': 0,
                    'downside_risk': 0, 'substrategy': 1010, 'manager': ['PL000000F5'], 'annual_return_rank': 0.5,
                    'downside_risk_rank': 0.5, 'max_drawdown_rank': 0.5, 'sharp_ratio_rank': 0.5, 'z_score': 50}
        fund_rank = fund_rank.append(now_fund, ignore_index=True)

    return fund_rank[fund_rank['fund_id'] == fund][metric].values[0]


def translate_single(content, content_id, evaluation):
    '''
    content = [["优秀","良好","一般"],
           ["优秀","良好","合格","较差"],
           ["优秀","良好","合格","较差"],
           ["高","一般","较低"]]
    evaluation = [0,1,1,2]
    '''
    ret = []
    for i, v in enumerate(evaluation):
        if isinstance(v, str):
            ret.append(v)
            continue
        elif content[content_id][i][v] in ["优秀", "良好", "高", "高于", "较好"]:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        elif content_id == 4 and v == 0:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        else:
            ret.append("""<span class="self_description_green">{}</span>""".format(content[content_id][i][v]))
    return tuple(ret)


def choose_good_evaluation(evaluation):
    """抽取好的评价

    Args:
        evaluation: 个基的评价

    Returns: 个基好的评价

    """
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]
    v5 = evaluation.get(5)

    if v1[0] > 1:
        del evaluation[1]
    if v2[0] > 1 and float(v2[1].strip('%')) <= 60:
        del evaluation[2]
    if v3[0] > 1:
        del evaluation[3]
    if v4[0] != 0 or v4[1] != 0:
        del evaluation[4]
    # if v5[0] < 3 or v5[2] > 1:  # 基金经理的基金管理年限小于三年或平均业绩处于中下水平
    if v5:
        del evaluation[5]

    return evaluation


def choose_bad_evaluation(evaluation):
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]

    if v1[0] < 2:
        del evaluation[1]
    if v2[0] < 2:
        del evaluation[2]
    if v3[0] < 2:
        del evaluation[3]
    if v4[0] != 1 or v4[1] != 1:
        del evaluation[4]

    return evaluation


def get_fund_rank():
    """获取基金指标排名

    :return: 基金指标排名表
    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT * FROM new_fund_rank"

        # df = pd.read_sql(sql, con)
        # df = pd.read_csv('fund_rank.csv', encoding='gbk')
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['index', 'fund_id', 'range_return', 'annual_return', 'max_drawdown',
                                               'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                               'substrategy', 'manager', 'annual_return_rank', 'downside_risk_rank',
                                               'max_drawdown_rank', 'sharp_ratio_rank', 'z_score'])
        df.drop('index', axis=1, inplace=True)
        return df


def get_index_daily(index_id, start_date):
    """获取指数日更数据

    Args:
        index_id: 指数ID
        start_date: 数据开始时间

    Returns:与组合净值形式相同的表

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        sql = "SELECT ts_code, trade_date, close FROM index_daily " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()

        df = pd.DataFrame(list(data), columns=['ts_code', 'trade_date', ' close'])
        df.rename({'ts_code': 'fund_id', 'trade_date': 'end_date', 'close': 'adj_nav'}, axis=1, inplace=True)
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
    return df


def get_index_monthly(index_id, start_date):
    """获取指数月度数据

    Args:
        index_id: 指数ID
        start_date: 数据开始时间

    Returns:与组合净值形式相同的表

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT ts_code, trade_date, pct_chg FROM index_monthly " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()

        df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'pct_chg'])
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
        return df


def get_tamp_fund():
    """获取探普产品池净值表

    Returns:

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT id FROM tamp_fund_info WHERE id LIKE 'HF%'"
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()
        # df = pd.read_sql(sql, con)
        df = pd.DataFrame(list(data), columns=['fund_id'])
        # df.rename({'id': 'fund_id'}, axis=1, inplace=True)
    return df


def get_tamp_nav(fund, start_date, rollback=False, invest_type='public'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
    with TAMP_SQL(tamp_product_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == "private":
            sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
                  "WHERE fund_id='{}'".format(fund)
            # df = pd.read_sql(sql, con).dropna(how='any')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
            df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)

        # if df2['adj_nav'].count() == 0:
        #     logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
        #     return None

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
    return df


def get_risk_level(substrategy):
    """获取风险类型

    Args:
        substrategy: 二级策略

    Returns:

    """
    substrategy2risk = {1: "H",
                        1010: "H", 1020: "H", 1030: "H",
                        2010: "H",
                        3010: "H", 3020: "L", 3030: "H", 3040: "L", 3050: "M",
                        4010: "M", 4020: "M", 4030: "M", 4040: "M",
                        5010: "M", 5020: "L", 5030: "M",
                        6010: "L", 6020: "M", 6030: "L",
                        7010: "H", 7020: "H",
                        8010: "H", 8020: "M"}
    return substrategy2risk[substrategy]


def get_radar_data(fund):
    df = fund_rank[fund_rank['fund_id'] == fund]
    return_score = df['annual_return_rank'].values[0] * 100
    downside_score = df['downside_risk_rank'].values[0] * 100
    drawdown_score = df['max_drawdown_rank'].values[0] * 100
    sharpe_score = df['sharp_ratio_rank'].values[0] * 100
    total_score = df['z_score'].values[0]
    fund_name = get_fund_name(fund).values[0][0]

    return {'name': fund_name, 'data': [{'name': '绝对收益', 'data': '%.2f' % return_score},
                                        {'name': '抗风险能力', 'data': '%.2f' % downside_score},
                                        {'name': '极端风险', 'data': '%.2f' % drawdown_score},
                                        {'name': '风险调整后收益', 'data': '%.2f' % sharpe_score},
                                        {'name': '业绩持续性', 'data': '%.2f' % np.random.randint(70, 90)},
                                        {'name': '综合评分', 'data': '%.2f' % total_score}]}


def get_fund_name(fund):
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
        # df = pd.read_sql(sql, con)
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['fund_short_name'])
        if len(df) == 0:
            with TAMP_SQL(tamp_product_engine) as tamp_product:
                tamp_product_session = tamp_product.session
                sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
                # df = pd.read_sql(sql, con)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                df = pd.DataFrame(list(data), columns=['fund_short_name'])
                return df
        return df


# 获取排名信息
fund_rank = get_fund_rank()
# 获取探普产品池
tamp_fund = get_tamp_fund()


class PortfolioDiagnose(object):
    def __init__(self, client_type, portfolio, invest_amount, expect_return=0.1,
                 expect_drawdown=0.15, index_id='000905.SH', invest_type='private', start_date=None, end_date=None):
        """基金诊断

        Args:
            client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
            portfolio: 投资组合:[基金1, 基金2, 基金3...]
            invest_amount: 投资金额:10000000元
            expect_return: 期望收益
            expect_drawdown: 期望回撤
            index_id: 指数ID
            invest_type: 投资类型:public, private, ...
            start_date: 诊断所需净值的开始日期
            end_date: 诊断所需净值的结束日期
        """

        self.freq_list = []
        self.client_type = client_type
        self.portfolio = portfolio
        self.expect_return = expect_return
        self.expect_drawdown = expect_drawdown
        self.index_id = index_id
        self.invest_amount = invest_amount
        self.invest_type = invest_type
        self.start_date = start_date
        self.end_date = end_date

        if self.end_date is None:
            self.end_date = datetime.datetime(datetime.date.today().year,
                                              datetime.date.today().month, 1) - datetime.timedelta(1)
        if self.start_date is None:
            self.start_date = cal_date(self.end_date, 'Y', 1)
        else:
            self.start_date = datetime.datetime(start_date.year, start_date.month, start_date.day)
        self.replace_pair = dict()  # 由于数据不足半年而被替换为相同基金经理和策略的原基金和替换基金的映射
        self.no_data_fund = []  # 未在数据库中找到基金净值或者基金经理记录的基金
        self.abandon_fund_score = []  # 打分不满足要求的基金
        self.abandon_fund_corr = []  # 相关性过高
        self.proposal_fund = []  # 建议的基金
        self.old_correlation = None
        self.new_correlation = None
        self.old_weights = None
        self.new_weights = None
        self.origin_portfolio = None
        self.abandoned_portfolio = None
        self.propose_portfolio = None

    def get_portfolio(self, ):
        """获取组合净值表

        Returns:

        """
        # 获取原始投资组合的第一支基金的净值表
        prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)
        fund_info = get_fund_info(self.end_date, invest_type=self.invest_type)

        # while prod is None or prod.index[-1] - prod.index[0] < 0.6 * (self.end_date - self.start_date):
        while prod is None:
            # 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
            result = fund_info[fund_info['fund_id'] == self.portfolio[0]]
            manager = str(result['manager'].values)
            strategy = result['substrategy'].values

            replaced_fund = replace_fund(manager, strategy, fund_rank)

            if replaced_fund:
                # 替换基金数据非空则记录替换的基金对
                prod = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
                self.replace_pair[self.portfolio[0]] = replaced_fund
            else:
                # 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
                self.no_data_fund.append(self.portfolio[0])
                self.portfolio.pop(0)
                prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)

        # 记录基金的公布频率
        self.freq_list.append(get_frequency(prod))
        prod = rename_col(prod, self.portfolio[0])

        # 循环拼接基金净值表构建组合
        for idx in range(len(self.portfolio) - 1):
            prod1 = get_tamp_nav(self.portfolio[idx + 1], self.start_date, invest_type=self.invest_type)

            # if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
            if prod1 is None:
                result = fund_info[fund_info['fund_id'] == self.portfolio[idx + 1]]

                if result['fund_manager_id'].count() != 0:
                    manager = str(result['fund_manager_id'].values)
                    substrategy = result['substrategy'].values[0]
                    replaced_fund = replace_fund(manager, substrategy, fund_rank)
                else:
                    self.no_data_fund.append(self.portfolio[idx + 1])
                    continue

                if replaced_fund:
                    prod1 = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
                    self.replace_pair[self.portfolio[idx + 1]] = replaced_fund
                    self.freq_list.append(get_frequency(prod1))
                    prod1 = rename_col(prod1, replaced_fund)
                else:
                    self.no_data_fund.append(self.portfolio[idx + 1])
                    continue
            else:
                self.freq_list.append(get_frequency(prod1))
                prod1 = rename_col(prod1, self.portfolio[idx + 1])

            # 取prod表和prod1表的并集
            prod = pd.merge(prod, prod1, on=['end_date'], how='outer')

        # 对所有合并后的基金净值表按最大周期进行重采样
        prod.sort_index(inplace=True)
        prod.ffill(inplace=True)
        prod = resample(prod, get_trade_cal(), min(self.freq_list))
        if 'cal_date' in prod.columns:
            prod.drop(labels='cal_date', inplace=True, axis=1)
        if 'end_date' in prod.columns:
            prod.drop(labels='end_date', inplace=True, axis=1)
        prod.dropna(how='any', inplace=True)
        return prod

    def abandon(self, prod):
        """建议替换的基金

        Args:
            prod: 原始组合净值表

        Returns: 剔除建议替换基金的组合净值表

        """
        self.old_correlation = cal_correlation(prod)

        for fund in prod.columns:
            z_score = search_rank(fund_rank, fund, metric='z_score')
            # 建议替换得分为60或与其他基金相关度大于0.8的基金
            if z_score < 60:
                self.abandon_fund_score.append(fund)
                continue

            elif np.any(self.old_correlation[fund] > 0.8):
                self.abandon_fund_corr.append(fund)

        prod = prod.drop(self.abandon_fund_score + self.abandon_fund_corr, axis=1)
        self.old_correlation = self.old_correlation.fillna(1).round(2)
        self.old_correlation.columns = self.old_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.old_correlation.index = self.old_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
        return prod

    def proposal(self, prod):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
        # 组合内已包含的策略
        # included_strategy = set()
        # 按每种基金最少投资100w确定组合包含的最大基金数量
        max_len = len(self.portfolio) - len(prod.columns)

        # 排名表内包含的所有策略
        # all_strategy = set(fund_rank['substrategy'].to_list())
        all_risk = {"H", "M", "L"}
        included_risk = {}
        if prod is not None:
            # included_strategy = set([search_rank(fund_rank, fund, metric='substrategy') for fund in prod.columns])
            included_risk = set([get_risk_level(search_rank(fund_rank, fund, metric='substrategy'))
                                 for fund in prod.columns])

        # 待添加策略为所有策略-组合已包含策略
        # add_strategy = all_strategy - included_strategy
        add_risk = all_risk - included_risk

        # 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金
        for proposal in tamp_fund['fund_id']:
            if proposal in fund_rank['fund_id'].to_list() and proposal not in prod.columns:
                proposal_z_score = search_rank(fund_rank, proposal, metric='z_score')
                proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
            else:
                continue

            if proposal_z_score > 60 and (get_risk_level(proposal_strategy) in add_risk or not add_risk):
                # if proposal_z_score > 80:
                proposal_nav = get_tamp_nav(proposal, self.start_date, invest_type=self.invest_type)
                # 忽略净值周期大于周更的产品
                # if get_frequency(proposal_nav) <= 52:
                #     continue

                self.freq_list.append(get_frequency(proposal_nav))
                proposal_nav = rename_col(proposal_nav, proposal)

                # 按最大周期进行重采样,计算新建组合的相关性
                prod_with_new_fund = pd.merge(prod, proposal_nav, how='outer', on='end_date').astype(float)
                prod_with_new_fund.sort_index(inplace=True)
                prod_with_new_fund.ffill(inplace=True)

                prod_with_new_fund = resample(prod_with_new_fund, get_trade_cal(), min(self.freq_list))
                self.new_correlation = cal_correlation(prod_with_new_fund)
                judge_correlation = self.new_correlation.fillna(0)

                if np.all(judge_correlation < 0.8):
                    prod = prod_with_new_fund
                    self.proposal_fund.append(proposal)
                    max_len -= 1
                    # add_strategy -= {proposal_strategy}
                    add_risk -= {get_risk_level(proposal_strategy)}
                    # if len(add_strategy) == 0 or max_len == 0:
                    if max_len == 0:
                        break
                else:
                    # prod.drop(columns=proposal, inplace=True)
                    self.freq_list.pop()

        prod.dropna(how='all', inplace=True)
        prod.fillna(method='bfill', inplace=True)
        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
        return prod

    def optimize(self, ):
        import time
        start = time.time()
        self.origin_portfolio = self.get_portfolio()
        end1 = time.time()
        print("原始组合数据获取时间:", end1 - start)
        self.abandoned_portfolio = self.abandon(self.origin_portfolio)
        end2 = time.time()
        print("计算换仓基金时间:", end2 - end1)
        self.propose_portfolio = self.proposal(self.abandoned_portfolio)
        end3 = time.time()
        print("遍历产品池获取候选推荐时间:", end3 - end2)
        # propose_portfolio.to_csv('test_portfolio.csv', encoding='gbk')

        mu = expected_returns.mean_historical_return(self.propose_portfolio, frequency=min(self.freq_list))
        S = risk_models.sample_cov(self.propose_portfolio, frequency=min(self.freq_list))
        dd = expected_returns.drawdown_from_prices(self.propose_portfolio)

        # if self.client_type == 1:
        # proposal_risk = [[x, get_risk_level(search_rank(fund_rank, x, metric='substrategy'))] for x in
        #                  propose_portfolio.columns]
        # self.proposal_fund = list(filter(lambda x: x[1] != 'H', proposal_risk))

        # drop_fund_list = list(filter(lambda x: x[1] = 'H', proposal_risk))
        # proposal_portfolio = list((set(self.portfolio) - set(self.no_data_fund) - set(self.replace_pair.keys())) | \
        #                           (set(self.proposal_fund) | set(self.replace_pair.values())))
        # propose_portfolio.drop()

        propose_risk_mapper = dict()
        for fund in self.propose_portfolio.columns:
            propose_risk_mapper[fund] = str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))

        if self.client_type == 1:
            risk_upper = {"L": 0.6, "M": 0.4, "H": 0.0}
            risk_lower = {"L": 0.6, "M": 0.4, "H": 0.0}
        elif self.client_type == 2:
            risk_upper = {"L": 0.5, "M": 0.3, "H": 0.2}
            risk_lower = {"L": 0.5, "M": 0.3, "H": 0.2}
        elif self.client_type == 3:
            risk_upper = {"L": 0.3, "M": 0.5, "H": 0.2}
            risk_lower = {"L": 0.3, "M": 0.5, "H": 0.2}
        elif self.client_type == 4:
            risk_upper = {"L": 0.3, "M": 0.4, "H": 0.3}
            risk_lower = {"L": 0.3, "M": 0.4, "H": 0.3}
        elif self.client_type == 5:
            risk_upper = {"L": 0.0, "M": 0.5, "H": 0.5}
            risk_lower = {"L": 0.0, "M": 0.5, "H": 0.5}
        else:
            risk_upper = {"H": 1.0}
            risk_lower = {"L": 0.0}
            raise ValueError

        w_low = 1000000 / self.invest_amount
        try:
            ef = EfficientFrontier(mu, S, weight_bounds=[w_low, 1], expected_drawdown=dd)
            # ef = EfficientFrontier(mu, S, weight_bounds=[0, 1], expected_drawdown=dd)
            ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
            ef.efficient_return(target_return=self.expect_return, target_drawdown=self.expect_drawdown)
            clean_weights = ef.clean_weights()
            ef.portfolio_performance(verbose=True)
            self.new_weights = np.array(list(clean_weights.values()))
        except:
            self.new_weights = np.asarray([1/len(self.propose_portfolio.columns)] * len(self.propose_portfolio.columns))

        print(self.new_weights)
        end4 = time.time()
        print("模型计算一次时间:", end4 - end3)
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)

        # elif self.client_type == 2:
        # elif self.client_type == 3:
        # elif self.client_type == 4:
        # elif self.client_type == 5:
        # print(len(propose_portfolio.columns))
        # # 单支基金占投资额的下界为 100W/投资总额
        # # w_low = 1e6 / self.invest_amount
        # w_low = 0
        # w_origin, S, mu = optim_drawdown(propose_portfolio, 0.5, [w_low, 1], min(self.freq_list))
        # print(w_origin)
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)

    def return_compare(self):
        index_data = get_index_daily(self.index_id, self.start_date)
        index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1
        # origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
        propose_fund_return = self.propose_portfolio.iloc[:, :] / self.propose_portfolio.iloc[0, :] - 1
        propose_fund_return['return'] = propose_fund_return.T.iloc[:, :].apply(lambda x: np.dot(self.new_weights, x))
        return index_return, propose_fund_return

    def old_evaluation(self, group_name, group_result, data_adaptor):
        start_year = data_adaptor.start_date.year
        start_month = data_adaptor.start_date.month
        current_year = data_adaptor.end_date.year
        current_month = data_adaptor.end_date.month
        current_day = data_adaptor.end_date.day
        past_month = (current_year - start_year) * 12 + current_month - start_month

        # 投入成本(万元)
        input_cost = round(group_result[group_name]["total_cost"] / 10000, 2)
        # 整体盈利(万元)
        total_profit = round(group_result[group_name]["cumulative_profit"] / 10000, 2)
        # 整体表现 回撤能力
        fund_rank_data = fund_rank[fund_rank["fund_id"].isin(self.portfolio)]
        z_score = (group_result[group_name]["cumulative_return"] - 1)*100
        drawdown_rank = group_result[group_name]["max_drawdown"][0]*100
        return_rank_df = fund_rank_data["annual_return_rank"]
        z_score_level = np.select([z_score > 20,
                                   15 <= z_score < 20,
                                   10 <= z_score < 15,
                                   z_score < 10], [0, 1, 2, 3]).item()
        drawdown_level = np.select([drawdown_rank <= 5,
                                    5 <= drawdown_rank < 7,
                                    7 <= drawdown_rank < 10,
                                    drawdown_rank > 10], [0, 1, 2, 3]).item()
        # 收益稳健
        fund_rank_re = fund_rank_data[fund_rank_data["annual_return_rank"] > 0.8]
        return_rank_evaluate = ""
        if len(fund_rank_re) > 0:
            num = len(fund_rank_re)
            fund_id_rank_list = list(fund_rank_re["fund_id"])
            for f_id in fund_id_rank_list:
                name = data_adaptor.user_customer_order_df[data_adaptor.user_customer_order_df["fund_id"] == f_id][
                    "fund_name"].values[0]
                return_rank_evaluate = return_rank_evaluate + name + "、"
            return_rank_evaluate = return_rank_evaluate[:-1] + "等" + str(num) + "只产品稳健,对组合的收益率贡献明显,"

        # 正收益基金数量
        group_hold_data = pd.DataFrame(group_result[group_name]["group_hoding_info"])
        profit_positive_num = len(group_hold_data[group_hold_data["profit"] > 0]["fund_name"].unique())
        if profit_positive_num > 0:
            profit_positive_evaluate = str(profit_positive_num) + "只基金取得正收益,"
        else:
            profit_positive_evaluate = ""

        # 综合得分较低数量
        abandon_num = len(self.abandon_fund_score)
        abandon_evaluate = str(abandon_num) + "只基金综合得分较低建议更换,"

        # 成立时间短
        if len(self.no_data_fund) > 0:
            no_data_fund_evaluate = str(len(self.no_data_fund)) + "只基金因为成立时间较短,暂不做评价;"
        else:
            no_data_fund_evaluate = ";"

        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
        strategy_list = group_order_df["substrategy"]
        uniqe_strategy = list(strategy_list.unique())
        uniqe_strategy_name = [dict_substrategy[int(x)] + "、" for x in uniqe_strategy]
        # 覆盖的基金名称
        strategy_name_evaluate = "".join(uniqe_strategy_name)[:-1]

        try:
            if len(uniqe_strategy) > 3:
                strategy_distribution_evaluate = "策略上有一定分散"
            else:
                strategy_distribution_evaluate = "策略分散程度不高"
        except:
            strategy_distribution_evaluate = "策略分散程度不高"
        # 相关性
        if len(self.abandon_fund_corr) > 0:
            fund_corr_name = [str(group_order_df[group_order_df["fund_id"] == f_id]["fund_name"].values[0]) + "和" for
                              f_id in self.abandon_fund_corr]
            fund_corr_evaluate = "".join(fund_corr_name)[:-1] + "相关性较高,建议调整组合配比;"
        else:
            fund_corr_evaluate = ";"

        num_fund = len(self.portfolio)
        evaluate_enum = [["优秀", "良好", "一般", "较差"],
                         ["优秀", "良好", "合格", "较差"]]

        if data_adaptor.total_result_data["cumulative_profit"] < 0 and z_score_level == 0:
            z_score_level = 2

        z_score_evaluate = evaluate_enum[0][z_score_level]
        drawdown_evaluate = evaluate_enum[1][drawdown_level]
        if z_score_evaluate in ["优秀", "良好"]:
            z_score_evaluate = """<span class="self_description_red">{}</span>""".format(z_score_evaluate)
        else:
            z_score_evaluate = """<span class="self_description_green">{}</span>""".format(z_score_evaluate)

        if drawdown_evaluate in ["优秀", "良好"]:
            drawdown_evaluate = """<span class="self_description_red">{}</span>""".format(drawdown_evaluate)
        else:
            drawdown_evaluate = """<span class="self_description_green">{}</span>""".format(drawdown_evaluate)

        sentence = {
            1: "1、组合构建于{}年{}月,至今已运行{}个月。投入成本为{}万元,截止{}年{}月{}日,整体盈利{}万元,整体表现{},回撤控制能力{};\n",
            2: "2、组合共持有{}只基金,{}{}{}{}\n",
            3: "3、策略角度来看,组合涵盖了{}, {}{}\n"
        }

        data = {1: [start_year, start_month, past_month, input_cost, current_year, current_month, current_day,
                    total_profit, z_score_evaluate, drawdown_evaluate],
                2: [num_fund, return_rank_evaluate, profit_positive_evaluate, abandon_evaluate, no_data_fund_evaluate],
                3: [strategy_name_evaluate, strategy_distribution_evaluate, fund_corr_evaluate]
                }
        ret = []
        for k, v in data.items():
            ret.append(sentence[k].format(*data[k]).replace(",;", ";"))

        # 旧组合累积收益df
        group_result_data = group_result[group_name]
        hold_info = group_result_data["group_hoding_info"]
        hold_info_df = pd.DataFrame(hold_info)
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
        group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())

        freq_max = group_order_df["freq"].max()
        n_freq = freq_days(int(freq_max))

        old_return_df = group_result_data["return_df"]
        old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"] - 1

        # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
        total_asset = round(hold_info_df["market_values"].sum(), 2)
        old_return = group_result_data["cumulative_return"]
        old_return_ratio_year = group_result_data["return_ratio_year"]
        old_volatility = group_result_data["volatility"]
        old_max_drawdown = group_result_data["max_drawdown"]
        old_sharpe = group_result_data["sharpe"]

        # 指数收益
        # index_data = get_index_daily(self.index_id, self.start_date)
        # index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
        index_data = data_adaptor.fund_cnav_total[["index"]]
        index_data = index_data[index_data.index >= pd.to_datetime(data_adaptor.start_date)]
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1

        # 指数收益
        index_return = index_return[index_return.index >= group_order_start_date]
        index_return["index"] = index_return["index"].astype('float')
        start_index_return = index_return["index"].values[0]
        index_return["new_index_return"] = (index_return["index"] - start_index_return) / (1 + start_index_return)
        index_return_ratio = index_return["new_index_return"].values[-1]
        index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1],
                                                index_return["new_index_return"], n_freq)
        index_volatility = volatility(index_return["new_index_return"] + 1, n_freq)
        index_drawdown = max_drawdown(index_return["new_index_return"] + 1)
        index_sim = simple_return(index_return["new_index_return"]+1)
        index_exc = excess_return(index_sim, BANK_RATE, n_freq)
        index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)

        # 收益对比数据
        return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]],
                                     right_index=True,
                                     left_index=True)
        start = return_compare_df.index.values[0]
        if start > pd.to_datetime(self.start_date):
            row = [0, 0]
            return_compare_df.loc[pd.to_datetime(self.start_date)] = row

        return_compare_df["date"] = return_compare_df.index
        return_compare_df.sort_values(by="date", inplace=True)
        return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
        return_compare_df.iloc[1:-1, :]["date"] = ""
        old_return_compare_result = {

            "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
            "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
            "xlabels": return_compare_df["date"].values
        }
        # 指标对比
        old_indicator = {"group_name": "现有持仓组合", "return_ratio": "%.2f" % round((old_return - 1) * 100, 2),
                         "return_ratio_year": "%.2f" % round(old_return_ratio_year * 100, 2),
                         "volatility": "%.2f" % round(old_volatility * 100, 2),
                         "max_drawdown": "%.2f" % round(old_max_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(old_sharpe, 2)}

        index_indicator = {"group_name": "中证500", "return_ratio": "%.2f" % round(index_return_ratio * 100, 2),
                           "return_ratio_year": "%.2f" % round(index_return_ratio_year * 100, 2),
                           "volatility": "%.2f" % round(index_volatility * 100, 2),
                           "max_drawdown": "%.2f" % round(index_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(index_sharpe, 2)}
        old_indicator_compare = [old_indicator, index_indicator]

        return ret, old_return_compare_result, old_indicator_compare

    def new_evaluation(self, group_name, group_result, data_adaptor):
        try:
            group_result_data = group_result[group_name]
            hold_info = group_result_data["group_hoding_info"]
            hold_info_df = pd.DataFrame(hold_info)
            group_order_df = data_adaptor.user_customer_order_df[
                data_adaptor.user_customer_order_df["folio_name"] == group_name]
            group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())

            # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
            total_asset = round(hold_info_df["market_values"].sum(), 2)
            old_return = group_result_data["cumulative_return"]
            old_return_ratio_year = group_result_data["return_ratio_year"]
            old_volatility = group_result_data["volatility"]
            old_max_drawdown = group_result_data["max_drawdown"]
            old_sharpe = group_result_data["sharpe"]

            # 建议基金数据
            index_return, propose_fund_return = self.return_compare()
            propose_fund_id_list = list(propose_fund_return.columns)
            propose_fund_id_list.remove("return")
            with TAMP_SQL(tamp_product_engine) as tamp_product:
                tamp_product_session = tamp_product.session
                sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
                cur = tamp_product_session.execute(sql_product)
                data = cur.fetchall()
                product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
            propose_fund_df = product_df[product_df["fund_id"].isin(propose_fund_id_list)]

            # 基金名称,策略分级
            propose_fund_id_name_list = [propose_fund_df[propose_fund_df["fund_id"] == fund_id]["fund_name"].values[0] for
                                         fund_id in propose_fund_id_list]
            propose_fund_id_strategy_name_list = [dict_substrategy[int(propose_fund_df[propose_fund_df["fund_id"] == fund_id]["substrategy"].values[0])] for
                                         fund_id in propose_fund_id_list]
            propose_fund_asset = [round(self.new_weights[i] * total_asset, 2) for i in range(len(propose_fund_id_name_list))]

            propose_info = {propose_fund_id_strategy_name_list[i]:
                                {"fund_name": propose_fund_id_name_list[i],
                                 "substrategy": propose_fund_id_strategy_name_list[i],
                                 "asset": propose_fund_asset[i]}
                            for i in range(len(propose_fund_id_list))}
            # 调仓建议
            suggestions_result = {}
            old_hold_fund_name_list = list(hold_info_df["fund_name"])
            for hold in hold_info:
                suggestions = {}
                if hold["fund_strategy_name"] not in suggestions_result.keys():
                    suggestions_result[hold["fund_strategy_name"]] = {}
                suggestions["fund_strategy_name"] = hold["fund_strategy_name"]
                suggestions["fund_name"] = hold["fund_name"]
                suggestions["before_optimization"] = hold["market_values"]
                suggestions["after_optimization"] = 0
                if suggestions["fund_strategy_name"] in propose_fund_id_strategy_name_list:
                    suggestions["after_optimization"] = 0
                suggestions_result[hold["fund_strategy_name"]][suggestions["fund_name"]] = suggestions

            for key, value in propose_info.items():
                if value["fund_name"] not in old_hold_fund_name_list:
                    suggestions = {}
                    if key not in suggestions_result.keys():
                        suggestions_result[key] = {}
                    suggestions["fund_strategy_name"] = value["substrategy"]
                    suggestions["fund_name"] = value["fund_name"]
                    suggestions["before_optimization"] = 0
                    suggestions["after_optimization"] = value["asset"]
                    suggestions_result[key][suggestions["fund_name"]] = suggestions
                else:
                    suggestions_result[key][value["fund_name"]]["after_optimization"] = value["asset"]

            for key, value in suggestions_result.items():
                suggestions_result[key] = list(value.values())
            suggestions_result_asset = {"before": total_asset, "after": total_asset}

            # 旧组合累积收益df
            old_return_df = group_result_data["return_df"]
            # old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"]
            # 新组合累积收益df
            propose_fund_return_limit_data = propose_fund_return[propose_fund_return.index >= group_order_start_date]
            start_return = propose_fund_return_limit_data['return'].values[0]
            propose_fund_return_limit_data["new_return"] = (propose_fund_return_limit_data["return"] - start_return)/(1+start_return)

            # 新组合累积收益
            new_return_ratio = propose_fund_return_limit_data["new_return"].values[-1]
            # 新组合区间年化收益率
            freq_max = group_order_df["freq"].max()
            n_freq = freq_days(int(freq_max))
            new_return_ratio_year = annual_return(propose_fund_return_limit_data["new_return"].values[-1], propose_fund_return_limit_data, n_freq)

            # 新组合波动率
            new_volatility = volatility(propose_fund_return_limit_data["new_return"]+1, n_freq)

            # 新组合最大回撤
            new_drawdown = max_drawdown(propose_fund_return_limit_data["new_return"]+1)

            # 新组合夏普比率
            sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
            exc = excess_return(sim, BANK_RATE, n_freq)
            try:
                new_sharpe = sharpe_ratio(exc, sim, n_freq)
                if new_sharpe is None or math.isnan(new_sharpe):
                    new_sharpe = 0
            except:
                new_sharpe = 0

            # 指数收益
            index_return = index_return[index_return.index >= group_order_start_date]
            start_index_return = index_return[" close"].values[0]
            index_return["new_index_return"] = (index_return[" close"] - start_index_return) / (1 + start_index_return)
            index_return_ratio = index_return["new_index_return"].values[-1]
            index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], n_freq)
            index_volatility = volatility(index_return["new_index_return"]+1, n_freq)
            index_drawdown = max_drawdown(index_return["new_index_return"]+1)
            index_sim = simple_return(index_return["new_index_return"]+1)
            index_exc = excess_return(index_sim, BANK_RATE, n_freq)
            try:
                index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
                if index_sharpe is None or math.isnan(index_sharpe):
                    index_sharpe = 0.0
            except:
                index_sharpe = 0.0

            # 收益对比数据
            return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]], right_index=True,
                     left_index=True)
            return_compare_df = pd.merge(return_compare_df, propose_fund_return_limit_data["new_return"], right_index=True,
                     left_index=True)
            return_compare_df["date"] = return_compare_df.index
            return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
            return_compare_df.iloc[1:-1,:]["date"] = ""
            return_compare_result = {
                "new_combination": {"name": "新组合", "data": return_compare_df["new_return"].values*100},
                "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
                "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
                "xlabels": return_compare_df["date"].values
            }

            # 指标对比
            old_indicator = {"group_name": "现有持仓组合", "return_ratio": round((old_return-1)*100, 2), "return_ratio_year": round(old_return_ratio_year*100,2),
                             "volatility": round(old_volatility*100, 2), "max_drawdown": round(old_max_drawdown[0]*100, 2), "sharpe": round(old_sharpe, 2)}
            new_indicator = {"group_name": "建议优化组合", "return_ratio": round(new_return_ratio*100, 2), "return_ratio_year": round(new_return_ratio_year*100, 2),
                             "volatility": round(new_volatility*100, 2), "max_drawdown": round(new_drawdown[0]*100, 2), "sharpe": round(new_sharpe, 2)}
            index_indicator = {"group_name": "中证500", "return_ratio": round(index_return_ratio*100, 2), "return_ratio_year": round(index_return_ratio_year*100, 2),
                             "volatility": round(index_volatility*100, 2), "max_drawdown": round(index_drawdown[0]*100, 2), "sharpe": round(index_sharpe, 2)}
            indicator_compare = [new_indicator, old_indicator, index_indicator]


            # 在保留{}的基础上,建议赎回{},并增配{}后,整体组合波动率大幅降低,最大回撤从{}降到不足{},年化收益率提升{}个点
            hold_fund = set(self.portfolio) - set(self.abandon_fund_score + self.abandon_fund_corr + self.no_data_fund)
            hold_fund_name = [get_fund_name(x).values[0][0] for x in hold_fund]
            abandon_fund = (self.abandon_fund_score + self.abandon_fund_corr)
            abandon_fund_name = [get_fund_name(x).values[0][0] for x in abandon_fund]
            proposal_fund = self.proposal_fund
            proposal_fund_name = [get_fund_name(x).values[0][0] for x in proposal_fund]

            sentence = []
            if len(hold_fund) > 0:
                sentence.append("在保留" + "".join([i + "," for i in hold_fund_name]).rstrip(",") + "的基础上")
            if len(abandon_fund) > 0:
                sentence.append("建议赎回" + "".join([i + "," for i in abandon_fund_name]).rstrip(","))
            if len(proposal_fund) > 0:
                sentence.append("增配" + "".join([i + "," for i in proposal_fund_name]).rstrip(",") + "后")
            if new_volatility < old_volatility * 0.9:
                sentence.append("整体组合波动率大幅降低")
            if new_drawdown < old_max_drawdown:
                sentence.append("最大回撤从{:.2%}降到不足{:.2%}".format(old_max_drawdown[0], new_drawdown[0]))
            if new_return_ratio_year > old_return_ratio_year:
                sentence.append("年化收益率提升{:.2f}个点".format((new_return_ratio_year - old_return_ratio_year) * 100))

            whole_sentence = ",".join(sentence).lstrip(",") + "。"
            return suggestions_result, suggestions_result_asset, return_compare_result, indicator_compare, whole_sentence
        except Exception as e:
            repr(e)
            return None, None, None, None, None

    def single_evaluation(self, fund_id, objective=False):
        """
           1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
           2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
           3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
           4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
           5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%

           旧个基显示1-4,新个基显示1-5。

           旧个基如果是要保留的,显示好的评价。
                如果是要剔除的,显示坏的评价。

           新个基只显示好的评价。
        Args:
            fund_id:

        Returns:
        """
        z_score = search_rank(fund_rank, fund_id, metric='z_score')
        total_level = np.select([z_score >= 80,
                                 70 <= z_score < 80,
                                 z_score < 70], [0, 1, 2]).item()

        index_return_monthly = get_index_monthly(self.index_id, self.start_date)
        fund_nav = get_tamp_nav(fund_id, self.start_date, invest_type=self.invest_type)
        fund_nav_monthly = fund_nav.groupby([fund_nav.index.year, fund_nav.index.month]).tail(1)
        fund_nav_monthly = rename_col(fund_nav_monthly, fund_id)
        fund_return_monthly = simple_return(fund_nav_monthly[fund_id].astype(float))
        index_return_monthly.index = index_return_monthly.index.strftime('%Y-%m')
        fund_return_monthly.index = fund_return_monthly.index.strftime('%Y-%m')
        compare = pd.merge(index_return_monthly, fund_return_monthly, how='inner', left_index=True, right_index=True)
        fund_win_rate = ((compare[fund_id] - compare['pct_chg']) > 0).sum() / compare[fund_id].count()

        return_rank = search_rank(fund_rank, fund_id, metric='annual_return_rank')
        return_level = np.select([return_rank >= 0.8,
                                  0.7 <= return_rank < 0.8,
                                  0.6 <= return_rank < 0.7,
                                  return_rank < 0.6], [0, 1, 2, 3]).item()
        return_bool = 1 if return_level > 2 else 0
        return_triple = return_level - 1 if return_level >= 2 else return_level

        drawdown_rank = search_rank(fund_rank, fund_id, metric='max_drawdown_rank')
        drawdown_value = search_rank(fund_rank, fund_id, metric='max_drawdown')
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        drawdown_bool = 1 if drawdown_level > 2 else 0
        drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

        sharp_rank = search_rank(fund_rank, fund_id, metric='sharp_ratio_rank')
        sharp_level = np.select([sharp_rank >= 0.8,
                                 0.6 <= sharp_rank < 0.8,
                                 sharp_rank < 0.6], [0, 1, 2]).item()

        data = {1: [total_level, return_level, drawdown_level, sharp_level],
                2: [return_triple, format(fund_win_rate, '.2%'), return_bool],
                3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
                4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

        if fund_id in self.abandon_fund_score:
            data['remove'] = True
        elif fund_id in self.proposal_fund:
            data[5] = [1] * 7
            data['remove'] = False
        else:
            data['remove'] = False

        x = '30%'
        content = {
            # 第一个评价
            1: [["优秀", "良好", "一般"],
                ["优秀", "良好", "合格", "较差"],
                ["优秀", "良好", "合格", "较差"],
                ["高", "一般", "较低"]],
            # 第二个评价
            2: [["高于", "持平", "低于"],
                x,
                ["优秀", "一般"]],
            # 第三个评价
            3: [["优秀", "良好", "一般"],
                ["高", "中", "低"], x,
                ["高于", "持平", "低于"]],
            # 第四个评价
            4: [["较好", "较差"],
                ["较小", "较大"],
                ["较小", "较小"],
                ["较大", "较小"],
                ["较低", "较高"]],
            5: [["TO DO"]] * 7}

        sentence = {
            1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
            2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
            3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
            4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n",
            5: "基金经理,投资年限%s年,经验丰富;投资能力较强,生涯中共管理过%s只基金,历任的%s只基金平均业绩在同类中处于上游水平,其中%s只排名在前%s;生涯年化回报率%s,同期大盘只有%s;"}

        remove = data["remove"]
        del data["remove"]

        # 不剔除,选择好的话术
        if not remove:
            evaluation = choose_good_evaluation(data)
        # 剔除,选择坏的话术
        else:
            evaluation = choose_bad_evaluation(data)

        ret = []
        fund_name = get_fund_name(fund_id).values[0][0]

        # 默认评价
        # try:
        #     default_evaluation = pd.read_csv("./app/service/evaluation.csv", encoding='utf-8', names=['fund_id', 'eval'])
        #     if default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0]:
        #         ret.append('1、' + default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0])
        #
        #         evaluation_dict = {'name': fund_name, 'data': ret}
        #
        #         if objective:
        #             if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
        #                 evaluation_dict['status'] = "换仓"
        #             elif fund_id in self.portfolio:
        #                 evaluation_dict['status'] = "保留"
        #         else:
        #             evaluation_dict['status'] = ""
        #         return evaluation_dict
        # except Exception as e:
        #     pass

        i = 1
        for k, v in evaluation.items():
            single_sentence = str(i) + "、" + sentence[k] % translate_single(content, k, v)
            ret.append(single_sentence)
            i += 1

        evaluation_dict = {'name': fund_name, 'data': ret}

        if objective:
            if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
                evaluation_dict['status'] = "换仓"
            elif fund_id in self.portfolio:
                evaluation_dict['status'] = "保留"
        else:
            evaluation_dict['status'] = ""
        return evaluation_dict

    def old_portfolio_evaluation(self, objective=False):
        try:
            result = []
            for fund in self.portfolio:
                try:
                    result.append(self.single_evaluation(fund, objective))
                except IndexError:
                    continue
            return result
        except Exception as e:
            repr(e)
            return None

    def propose_fund_evaluation(self, ):
        try:
            result = []
            for fund in self.proposal_fund:
                result.append(self.single_evaluation(fund))
            return result
        except Exception as e:
            repr(e)
            return None

    def single_fund_radar(self):
        radar_data = []
        for fund in self.portfolio:
            try:
                radar_data.append(get_radar_data(fund))
            except IndexError:
                continue
        return radar_data

    def propose_fund_radar(self):
        radar_data = []
        for fund in self.proposal_fund:
            radar_data.append(get_radar_data(fund))
        return radar_data

    def original_fund_index_compare(self, total_fund_cnav_df):
        compare_data = []
        for fund in self.portfolio:
            data_df = total_fund_cnav_df[[fund, "index"]].dropna()
            data_df[fund + "_return_ratio"] = (data_df[fund] / data_df[fund].iloc[0] - 1)*100
            data_df["index_return_ratio"] = (data_df["index"] / data_df["index"].iloc[0] - 1) * 100
            xlabels = ["" for i in range(len(data_df))]

            com_data = {
                "xlabels": xlabels,
                "index": {'name': '中证500', 'data': data_df["index_return_ratio"].values},
                "fund": {'name': fund, 'data': data_df[fund + "_return_ratio"].values},
            }
            compare_data.append(com_data)
        return compare_data

# portfolio = ['HF00002JJ2', 'HF00005DBQ', 'HF0000681Q', 'HF00006693', 'HF00006AZF', 'HF00006BGS']
# portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
# portfolio_diagnose.optimize()
# if __name__ == '__main__':
    # print(portfolio_diagnose.single_fund_radar())
    # print(portfolio_diagnose.propose_fund_radar())
    # print(portfolio_diagnose.old_portfolio_evaluation())
    # print('旧组合相关性:', portfolio_diagnose.old_correlation)
    # print('新组合相关性:', portfolio_diagnose.new_correlation)
    # print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
    # print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())
    # print(portfolio_diagnose.single_evaluation(fund_id='HF0000681Q'))