result_service_v2.py 33.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/23 15:29
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : result_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
import datetime
from decimal import Decimal
from app.service.data_service_v2_1 import UserCustomerDataAdaptor
from app.utils.fund_rank import get_frequency
from app.utils.week_evaluation import *


class UserCustomerResultAdaptor(UserCustomerDataAdaptor):
    total_result_data = {}
    group_result_data = {}

    def __init__(self, user_id, customer_id, end_date=str(datetime.date.today())):
        super().__init__(user_id, customer_id, end_date)

    # 组合结果数据
    def calculate_group_result_data(self):

        for folio in self.group_data.keys():
            folio_report_data = {}

            cur_folio_result_cnav_data = self.group_data[folio]["result_cnav_data"]
            cur_folio_order_data = self.group_data[folio]["order_df"].copy()

            # freq_max = cur_folio_order_data["freq"].max()
            freq_list = [get_frequency(cur_folio_result_cnav_data[[p_nav]]) for p_nav in
                         cur_folio_result_cnav_data.columns]
            freq_dict = {250: 1, 52: 2, 24: 4, 12: 3, 4: 5}
            freq_max = freq_dict[min(freq_list)]
            first_trade_date = cur_folio_order_data["confirm_share_date"].min()

            fund_id_list = list(cur_folio_order_data["fund_id"].unique())
            fund_id_list_earn = [i + "_earn" for i in fund_id_list]
            # fund_id_list_amount = [i + "_amount" for i in fund_id_list]
            profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
            folio_report_data["fund_id_list"] = fund_id_list

            # 组合收益率数组
            # return_ratio_df, contribution_decomposition= self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
            # resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
            resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
            if resample_cur_folio_result_cnav_data.index.values[-1] > self.end_date:
                last = resample_cur_folio_result_cnav_data.index.values[-1]
                resample_cur_folio_result_cnav_data["index_date"] = resample_cur_folio_result_cnav_data.index
                resample_cur_folio_result_cnav_data.loc[last, "index_date"] = self.end_date
                resample_cur_folio_result_cnav_data.set_index("index_date", inplace=True)
            resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <= self.end_date]
            return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data,
                                                                                 fund_id_list)
            resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
            resample_df = resample_df[resample_df.index <= self.end_date]


            # 收益分解df
            contribution_decomposition_df = contribution_decomposition.fillna(0)*100
            p_plot_data = []
            for a_fund_id in list(contribution_decomposition_df.columns):
                a_name = cur_folio_order_data[cur_folio_order_data["fund_id"]==a_fund_id]["fund_name"].values[0]
                plot_data = {'name': a_name, 'data': contribution_decomposition_df[a_fund_id].astype(np.float64).values}
                p_plot_data.append(plot_data)
            x_lables_data = list(contribution_decomposition_df.index)
            cumulative_data = {'name': '总收益', 'data': ((month_return_ratio_df["cum_return_ratio"] - 1)*100).values}
            folio_report_data["contribution_decomposition"] = {"xlabels": x_lables_data, "product_list": p_plot_data,
                                                               "cumulative": cumulative_data}

            # 总成本
            total_cost = round(float((cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_share"]*cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["nav"]).sum()), 0)
            folio_report_data["total_cost"] = total_cost

            # 累积盈利
            cumulative_profit = profit_df.sum().sum()
            folio_report_data["cumulative_profit"] = float(cumulative_profit)

            # 区间年化收益率
            n_freq = freq_days(int(freq_max))
            return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1]-1), resample_df, n_freq)
            folio_report_data["return_ratio_year"] = float(return_ratio_year)

            # 波动率
            volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
            folio_report_data["volatility"] = float(volatility_)

            # 最大回撤
            drawdown = max_drawdown(resample_df["cum_return_ratio"])
            folio_report_data["max_drawdown"] = drawdown

            # 夏普比率
            sim = simple_return(resample_df["cum_return_ratio"])
            exc = excess_return(sim, BANK_RATE, n_freq)
            try:
                sharpe = sharpe_ratio(exc, sim, n_freq)
            except ZeroDivisionError:
                sharpe = 0.0
            folio_report_data["sharpe"] = float(sharpe)

            # 期末资产
            ending_assets = cumulative_profit + total_cost
            folio_report_data["ending_assets"] = float(ending_assets)

            # 本月收益
            cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date+datetime.timedelta(days=1), fund_id_list_earn]
            cur_month_profit = cur_month_profit_df.sum().sum()
            folio_report_data["cur_month_profit"] = float(cur_month_profit)

            # 本月累积收益率
            last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
            cur_profit_ratio = return_ratio_df.loc[self.month_start_date - datetime.timedelta(days=1):, "cum_return_ratio"].values
            if len(last_profit_ratio) <= 0:
                cur_month_profit_ratio = cur_profit_ratio[-1] - 1
            else:
                cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
            folio_report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)

            # 今年累积收益
            cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
            cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
            cur_year_profit = cur_year_profit_df.sum().sum()
            folio_report_data["cur_year_profit"] = float(cur_year_profit)

            # 今年累积收益率
            last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
            cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
            if len(last_profit_ratio) <= 0:
                cur_year_profit_ratio = cur_profit_ratio[-1] - 1
            else:
                cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
            folio_report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)

            # 累积收益率
            cumulative_return= return_ratio_df["cum_return_ratio"].values[-1]
            folio_report_data["cumulative_return"] = float(cumulative_return)

            # 月度分组
            def year_month(x):
                a = x.year
                b = x.month
                return str(a) + "/" + str(b)

            profit_df_cp = profit_df.copy()
            profit_df_cp["date"] = profit_df_cp.index
            grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
            sum_group = grouped.agg(np.sum)
            month_sum = sum_group.sum(axis=1)

            # 贡献分解
            month_earn = sum_group.div(month_sum, axis='rows')
            month_earn["datetime"] = pd.to_datetime(month_earn.index)
            month_earn.sort_values(by="datetime", inplace=True)
            del month_earn["datetime"]
            col = list(month_earn.columns)
            col_ = {x: x.replace('_earn', '') for x in list(col)}
            month_earn.rename(columns=col_, inplace=True)
            # folio_report_data["contribution_decomposition"] = month_earn

            # 组合内单个基金净值数据  组合内基金持仓数据
            result_fund_nav_info, result_fund_hoding_info = self.group_fund_basic_info_data(cur_folio_order_data, cur_folio_result_cnav_data, cumulative_profit, total_cost)

            # 拼接组合以及综合结果数据
            folio_report_data["group_nav_info"] = result_fund_nav_info
            folio_report_data["group_hoding_info"] = result_fund_hoding_info
            folio_report_data["group_hoding_info_total"] = \
                {"total_cost": "%.2f" % round(float(total_cost)/10000.0, 2),
                 "cur_month_profit": "%.2f" % round(cur_month_profit/10000.0, 2),
                 "cur_month_profit_ratio": "%.2f" % round(cur_month_profit_ratio*100, 2),
                 "ending_assets": "%.2f" % round(ending_assets/10000.0, 2),
                 "weight": 100,
                 "cumulative_profit": "%.2f" % round(cumulative_profit/10000.0, 2),
                 "cumulative_return": "%.2f" % round((cumulative_return-1)*100, 2),
                 "return_ratio_year": "%.2f" % round(return_ratio_year*100, 2)}

            # 对应指数数据
            index_df = self.get_customer_index_nav_data().dropna()
            index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)],
                                                          "index")
            folio_report_data["index_result"] = index_result
            folio_report_data["return_df"] = resample_df
            self.group_result_data[folio] = folio_report_data

        return self.group_result_data

    # 综述数据
    def calculate_total_data(self):
        report_data = {}

        cur_folio_result_cnav_data = self.total_customer_order_cnav_df.copy()
        cur_folio_order_data = self.user_customer_order_df.copy()
        # freq_max = cur_folio_order_data["freq"].max()
        freq_list = [get_frequency(cur_folio_result_cnav_data[[p_nav]]) for p_nav in
                     cur_folio_result_cnav_data.columns]
        freq_dict = {250: 1, 52: 2, 24: 4, 12: 3, 4: 5}
        freq_max = freq_dict[min(freq_list)]
        #
        fund_id_list = list(cur_folio_order_data["fund_id"].unique())
        fund_id_list_earn = [i + "_earn" for i in fund_id_list]
        fund_id_list_amount = [i + "_net_amount" for i in fund_id_list]
        profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
        amount_df = cur_folio_result_cnav_data[fund_id_list_amount].copy()

        # 持仓周期
        first_trade_date = cur_folio_order_data["confirm_share_date"].min()
        hold_days = (self.end_date - pd.to_datetime(first_trade_date)).days
        report_data["hold_days"] = hold_days

        # 组合收益率数组
        # return_ratio_df = self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
        # resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)

        resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
        if resample_cur_folio_result_cnav_data.index.values[-1] > self.end_date:
            last = resample_cur_folio_result_cnav_data.index.values[-1]
            resample_cur_folio_result_cnav_data["index_date"] = resample_cur_folio_result_cnav_data.index
            resample_cur_folio_result_cnav_data.loc[last, "index_date"] = self.end_date
            resample_cur_folio_result_cnav_data.set_index("index_date", inplace=True)
        resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <=self.end_date]
        return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data, fund_id_list)
        resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
        resample_df = resample_df[resample_df.index <= self.end_date]

        # 总成本
        total_cost = round(float((cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_share"]*cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["nav"]).sum()), 0)
        report_data["total_cost"] = total_cost

        # 累积盈利
        cumulative_profit = profit_df.sum().sum()
        report_data["cumulative_profit"] = float(cumulative_profit)

        # 区间年化收益
        n_freq = freq_days(int(freq_max))
        return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1] - 1), resample_df, n_freq)
        report_data["return_ratio_year"] = float(return_ratio_year)

        # # 波动率
        # volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
        # report_data["volatility"] = float(volatility_)

        # 最大回撤
        drawdown = max_drawdown(resample_df["cum_return_ratio"])
        report_data["max_drawdown"] = drawdown
        #
        # # 夏普比率
        # sim = simple_return(resample_df["cum_return_ratio"])
        # exc = excess_return(sim, BANK_RATE, n_freq)
        # sharpe = sharpe_ratio(exc, sim, n_freq)
        # report_data["sharpe"] = float(sharpe)

        # 期末资产
        ending_assets = cumulative_profit + total_cost
        report_data["ending_assets"] = float(ending_assets)

        # 本月收益
        cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date + datetime.timedelta(days=1),
                              fund_id_list_earn]
        cur_month_profit = cur_month_profit_df.sum().sum()
        report_data["cur_month_profit"] = float(cur_month_profit)

        # 本月累积收益率
        last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
        cur_profit_ratio = return_ratio_df.loc[self.month_start_date:, "cum_return_ratio"].values
        if len(last_profit_ratio) <= 0:
            cur_month_profit_ratio = cur_profit_ratio[-1] - 1
        else:
            cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
        report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)

        # 今年累积收益
        cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
        cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
        cur_year_profit = cur_year_profit_df.sum().sum()
        report_data["cur_year_profit"] = float(cur_year_profit)

        # 今年累积收益率
        last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
        cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
        if len(last_profit_ratio) <= 0:
            cur_year_profit_ratio = cur_profit_ratio[-1] - 1
        else:
            cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
        report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)

        # 月度回报
        def year_month(x):
            a = x.year
            b = x.month
            return str(a) + "/" + str(b)

        profit_df_cp = profit_df.copy()
        profit_df_cp["date"] = profit_df_cp.index
        grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
        sum_group = grouped.agg(np.sum)
        month_sum = sum_group.sum(axis=1)

        return_ratio_df["date"] = return_ratio_df.index
        return_group = return_ratio_df.groupby(return_ratio_df["date"].apply(year_month))
        month_last_return_ratio = return_group.last()["cum_return_ratio"]

        month_sum = month_sum[month_sum.index.isin(month_last_return_ratio.index.values)]
        month_result = pd.DataFrame({"date": month_sum.index, "profit": month_sum.values, "ratio": month_last_return_ratio.values})
        month_result["datetime"] = pd.to_datetime(month_result["date"])
        month_result.sort_values(by="datetime", inplace=True)
        report_data["month_return"] = month_result

        #
        amount_df["date"] = amount_df.index
        grouped_amount = amount_df.groupby(amount_df["date"].apply(year_month))
        month_amount = grouped_amount.last()
        del month_amount["date"]
        month_amount_sum = month_amount.sum(axis=1)

        # 月度回报表格数据
        start_year = self.start_date.year
        now_year = self.end_date.year
        month_return_data_dict = {}
        for i in range(now_year-start_year+1):
            month_return_data_dict[start_year+i] = {j+1: {"profit": "-", "net_amount": "-"} for j in range(12)}
        for d_index, d_row in month_sum.items():
            cur_year = int(d_index[:4])
            cur_month = int(d_index[5:])
            cur_profit = round(d_row/10000.0, 2)
            cur_net_amount = round(month_amount_sum.loc[d_index]/10000, 2)
            month_return_data_dict[cur_year][cur_month]["profit"] = "%.2f"%cur_profit
            month_return_data_dict[cur_year][cur_month]["net_amount"] = "%.2f"%cur_net_amount
        # 组合月度回报表
        report_data["month_return_data_dict"] = month_return_data_dict

        # # 贡献分解
        # month_earn = sum_group.div(month_sum, axis='rows')
        # report_data["contribution_decomposition"] = month_earn

        # 累积收益率
        cumulative_return = return_ratio_df["cum_return_ratio"].values[-1]
        report_data["cumulative_return"] = float(cumulative_return)

        # 对应指数数据
        index_df = self.get_customer_index_nav_data().dropna()
        index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)], "index")
        report_data["index_result"] = index_result

        # self.__month_return(cur_folio_result_cnav_data, fund_id_list)

        self.total_result_data = report_data
        return report_data

    # 基金净值数据,持仓数据
    def group_fund_basic_info_data(self, p_order_df, p_result_cnav_data, p_sum_profit, p_total_amount):
        group_fund_basic_info = []
        group_fund_hoding_info = []
        freq_max = p_order_df["freq"].max()
        n_freq = freq_days(int(freq_max))
        resample_df = resample(p_result_cnav_data, self.trade_cal_date, freq_max)
        for index, row in p_order_df.iterrows():
            if row['order_type'] == 2 or row["confirm_share"] <= 0:
                continue
            cur_fund_id = str(row["fund_id"])
            cur_fund_performance = self.all_fund_performance[cur_fund_id]
            if len(cur_fund_performance) <=0:
                fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"], 4)}
                fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["ret_1w"] = "-"  # 上周
                fund_basic_info["ret_cum_1m"] = "-"  # 最近一个月
                fund_basic_info["ret_cum_6m"] = "-"  # 最近半年
                fund_basic_info["ret_cum_1y"] = "-"  # 最近一年
                fund_basic_info["ret_cum_ytd"] = "-"  # 今年以来
                fund_basic_info["ret_cum_incep"] = "-"  # 成立以来

                # 申购以来
                confirm_date = pd.to_datetime(row["confirm_share_date"])
                confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
                fund_basic_info["ret_after_confirm"] = round(
                    (fund_basic_info["cur_cnav"] - confirm_cnav) / confirm_cnav * 100, 2)
                # 分红
                distribution_df = self.all_fund_distribution[cur_fund_id]
                if distribution_df.empty:
                    fund_basic_info["distribution"] = "-"
                else:
                    distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
                    distribution = float(
                        distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
                    fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"
            else:
                cur_fund_info_series = cur_fund_performance.iloc[-1]
                # 基金净值数据
                fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"],4)}
                fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["ret_1w"] = str(round(cur_fund_info_series["ret_1w"]*100, 2)) + "%" if cur_fund_info_series["ret_1w"] is not None else "-"    # 上周
                fund_basic_info["ret_cum_1m"] = str(round(cur_fund_info_series["ret_cum_1m"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_1m"] is not None else "-"  # 最近一个月
                fund_basic_info["ret_cum_6m"] = str(round(cur_fund_info_series["ret_cum_6m"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_6m"] is not None else "-"  # 最近半年
                fund_basic_info["ret_cum_1y"] = str(round(cur_fund_info_series["ret_cum_1y"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_1y"] is not None else "-"  # 最近一年
                fund_basic_info["ret_cum_ytd"] = str(round(cur_fund_info_series["ret_cum_ytd"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_ytd"] is not None else "-"    # 今年以来
                fund_basic_info["ret_cum_incep"] = str(round(cur_fund_info_series["ret_cum_incep"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_incep"] is not None else "-"    # 成立以来
                # 申购以来
                confirm_date = pd.to_datetime(row["confirm_share_date"])
                confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
                fund_basic_info["ret_after_confirm"] = str(round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)) + "%"
                # 分红
                distribution_df = self.all_fund_distribution[cur_fund_id]
                if distribution_df.empty:
                    fund_basic_info["distribution"] = "-"
                else:
                    distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
                    distribution = float(distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
                    fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"

            group_fund_basic_info.append(fund_basic_info)

            # 基金持仓数据
            total_market_values = p_sum_profit + p_total_amount #   月末总市值
            fund_strategy_name = dict_substrategy[int(row["substrategy"])]
            if "长富" in row["fund_name"] or "盈沛" in row["fund_name"] :
                fund_strategy_name = "FOF"
            fund_hoding_info = {"fund_strategy_name": fund_strategy_name, "fund_name": row["fund_name"]}
            fund_hoding_info["confirm_date"] = row["confirm_share_date"].strftime("%Y-%m-%d")
            fund_hoding_info["hold_year"] = "%.2f" % round((self.end_date - pd.to_datetime(row["confirm_share_date"])).days/365.0, 2)    # 存续年数
            fund_hoding_info["market_values"] = round((float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"]))/10000, 2)
            temp_market_values = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"])
            fund_hoding_info["weight"] = "%.2f" % round(float(fund_hoding_info["market_values"]) / total_market_values * 10000.0 * 100, 2)  # 月末占比
            fund_hoding_info["cost"] = "%.2f" % round(float(row["confirm_amount"])/10000, 2)     # 投资本金
            # 当月收益
            if row['confirm_share_date'] > self.month_start_date:
                cal_month_start_date = row['confirm_share_date']
                last_month_cnav_serise = p_result_cnav_data[p_result_cnav_data.index == pd.to_datetime(cal_month_start_date)][
                    row["fund_id"]].dropna()
            else:
                cal_month_start_date = self.month_start_date - datetime.timedelta(days=1)
                last_month_cnav_serise = p_result_cnav_data[p_result_cnav_data.index<pd.to_datetime(cal_month_start_date)][row["fund_id"]].dropna()
            if len(last_month_cnav_serise) == 0:
                fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) / 10000, 2)
                temp_profit = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav)
                temp_profit_ratio = (fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav
            else:
                last_month_cnav = float(last_month_cnav_serise.values[-1])
                fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - last_month_cnav)/10000, 2)
                temp_profit = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - last_month_cnav)
                temp_profit_ratio = (fund_basic_info["cur_cnav"] - last_month_cnav) / last_month_cnav
            # 当月收益率
            # fund_hoding_info["month_return_ratio"] = "%.2f" % round(temp_profit / temp_market_values*100, 2)
            fund_hoding_info["month_return_ratio"] = "%.2f" % round(temp_profit_ratio * 100, 2)
            # 累积收益
            fund_hoding_info["cum_profit"] = "%.2f" % round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) / 10000, 2)
            # 累积收益率
            fund_hoding_info["cum_profit_ratio"] = "%.2f" % round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)
            cum_profit_ratio_temp = (fund_basic_info["cur_cnav"] - confirm_cnav) / confirm_cnav
            # 累积年化收益率
            cur_resample_df = resample_df[[row["fund_id"]]].dropna()
            return_ratio_year = annual_return(float(cum_profit_ratio_temp), cur_resample_df, n_freq)
            fund_hoding_info["return_ratio_year"] = "%.2f" % round(float(return_ratio_year)*100, 2)
            group_fund_hoding_info.append(fund_hoding_info)
        return group_fund_basic_info, group_fund_hoding_info

    @staticmethod
    def combination_yield(p_combina_df, fund_id_list):
        fund_id_list_amount = [i + "_net_amount" for i in fund_id_list]
        fund_id_list_profit_ratio = [i + "_profit_ratio" for i in fund_id_list]


        nav_net_amount_df = p_combina_df[fund_id_list + fund_id_list_amount+fund_id_list_profit_ratio].copy()
        # nav_net_amount_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
        nav_net_amount_df["sum_net_amount"] = nav_net_amount_df[fund_id_list_amount].sum(axis=1).apply(lambda x: Decimal.from_float(x))
        for amount_name in fund_id_list:
            price = nav_net_amount_df[amount_name].dropna()
            profit = price.diff().fillna(Decimal(0))
            profit_ratio_new = profit / price.shift(1)
            profit_ratio_old = nav_net_amount_df[amount_name+"_profit_ratio"]
            nan_index = profit_ratio_new[pd.isna(profit_ratio_new)].index
            profit_ratio_new[nan_index] = profit_ratio_old[nan_index]
            nav_net_amount_df[amount_name + "_profit_ratio"] = profit_ratio_new
            nav_net_amount_df[amount_name+"_amount_ratio"] = nav_net_amount_df[amount_name+"_net_amount"]/(nav_net_amount_df["sum_net_amount"])

            fund_profit_ratio = nav_net_amount_df[amount_name + "_profit_ratio"].dropna() + 1
            amount_ratio_shift = nav_net_amount_df[amount_name + "_amount_ratio"].shift(1)
            num_va = len(amount_ratio_shift[amount_ratio_shift.values==0])
            if num_va+1 >= len(amount_ratio_shift):
                amount_ratio_shift.iloc[num_va] = 0
            else:
                amount_ratio_shift.iloc[num_va] = amount_ratio_shift.values[num_va+1]
            nav_net_amount_df[amount_name + "_profit_ratio_weight"] =  amount_ratio_shift * nav_net_amount_df[amount_name + "_profit_ratio"]
            nav_net_amount_df[amount_name + "_profit_cum_ratio_weight"] = (fund_profit_ratio.cumprod()-1)*amount_ratio_shift # enter_date = nav_net_amount_df[amount_name+"_profit_ratio"].dropna()

        fund_id_list_profit_ratio_weight = [i + "_profit_ratio_weight" for i in fund_id_list]
        nav_profit_ratio_weight = nav_net_amount_df[fund_id_list_profit_ratio_weight].copy().fillna(method='ffill')

        # 组合收益率
        return_ratio = nav_profit_ratio_weight.sum(axis=1)

        # 组合累积收益率
        # return_ratio_list = list(return_ratio.values)
        cum_return_ratio = (return_ratio + 1).fillna(0).cumprod()

        # 收益率df
        cum_return_ratio_df = pd.DataFrame(return_ratio.values, columns=["return_ratio"])
        cum_return_ratio_df["cum_return_ratio"] = cum_return_ratio.values
        cum_return_ratio_df.index = return_ratio.index

        # 单个基金累计收益分解df
        weight_name_list = [i + "_profit_cum_ratio_weight"  for i in fund_id_list]
        signal_fund_cum_weight = nav_net_amount_df[weight_name_list]
        re_name = {x: x.replace("_profit_cum_ratio_weight", "") for x in weight_name_list}
        signal_fund_cum_weight.rename(columns=re_name, inplace=True)

        # 月度分组
        def year_month(x):
            a = x.year
            b = x.month
            return str(a) + "/" + str(b)

        profit_df_cp = signal_fund_cum_weight.copy()
        profit_df_cp["date"] = list(profit_df_cp.index)
        grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
        month_signal_fund_cum = grouped.last()
        month_signal_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
        month_signal_fund_cum.sort_values(by="datetime", inplace=True)
        del month_signal_fund_cum["datetime"]

        p_cum_df = cum_return_ratio_df.copy()
        p_cum_df["date"] = list(p_cum_df.index)
        cum_grouped = p_cum_df.groupby(p_cum_df["date"].apply(year_month))
        month_fund_cum = cum_grouped.last()
        month_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
        month_fund_cum.sort_values(by="datetime", inplace=True)
        del month_fund_cum["datetime"]

        return cum_return_ratio_df, month_fund_cum, month_signal_fund_cum

    @staticmethod
    def signal_fund_profit_result(p_fund_nav_df, cur_fund_id):
        result = {"fund_id": cur_fund_id}
        fund_nav_df = p_fund_nav_df.copy()
        profit = fund_nav_df[cur_fund_id].dropna() - fund_nav_df[cur_fund_id].dropna().shift(1)
        fund_nav_df[cur_fund_id + "_profit"] = profit
        fund_nav_df[cur_fund_id + "_profit_ratio"] = profit / fund_nav_df[cur_fund_id].dropna().shift(1)

        # 累积收益率
        return_ratio_list = list(fund_nav_df[cur_fund_id + "_profit_ratio"].astype("float64").values)
        cum_return_ratio = []
        last_ratio = 0
        for i in range(len(return_ratio_list)):
            if i == 0:
                last_ratio = 1 + return_ratio_list[i] if str(return_ratio_list[0]) != 'nan' else 1
                cum_return_ratio.append(last_ratio)
                continue

            cur_ratio = (1 + return_ratio_list[i]) * last_ratio
            cum_return_ratio.append(cur_ratio)
            last_ratio = cur_ratio

        fund_nav_df['cum_return_ratio'] = cum_return_ratio

        # 区间收益率
        result["return_ratio"] = cum_return_ratio[-1]

        # 区间年化收益
        n_freq = freq_days(1)
        return_ratio_year = annual_return((fund_nav_df["cum_return_ratio"].values[-1] - 1), fund_nav_df, n_freq)
        result["return_ratio_year"] = float(return_ratio_year)

        # 波动率
        volatility_ = volatility(fund_nav_df["cum_return_ratio"], n_freq)
        result["volatility"] = float(volatility_)

        # 最大回撤
        drawdown = max_drawdown(fund_nav_df["cum_return_ratio"])
        result["max_drawdown"] = drawdown

        # 夏普比率
        sim = simple_return(fund_nav_df["cum_return_ratio"])
        exc = excess_return(sim, BANK_RATE, n_freq)
        try:
            sharpe = sharpe_ratio(exc, sim, n_freq)
        except ZeroDivisionError:
            sharpe = 0.0
        result["sharpe"] = float(sharpe)

        return result

    def get_month_return_chart(self):
        res = self.total_result_data["month_return"]
        xlabels = res["date"].values
        res["profit"] = res["profit"].apply(lambda x: round(x/10000.0, 2))
        res["ratio"] = res["ratio"].apply(lambda x: round((x-1)*100, 2))
        product_list = {'name': '月度回报', 'data': res["profit"].values}
        cumulative = {'name': '累积收益', 'data': res["ratio"].values}

        return xlabels, [product_list], cumulative

    def get_total_basic_data(self):
        return self.total_result_data

    def get_group_data(self):
        return self.group_result_data

    # def __month_return(self, folio_cnav_data):
    #     # 月度回报
    #     def year_month(x):
    #         a = x.year
    #         b = x.month
    #         return str(a) + "-" + str(b)
    #     p_folio_cnav_data = folio_cnav_data.copy()
    #     p_folio_cnav_data["date"] = p_folio_cnav_data.index
    #     grouped_data = p_folio_cnav_data.groupby(p_folio_cnav_data["date"].apply(year_month))