jinjia2html.py 15.3 KB
import time
import uuid

from jinja2 import PackageLoader, Environment

from app.api.engine import work_dir, pdf_folder, template_folder
from app.service.portfolio_diagnose import PortfolioDiagnose
from app.service.result_service_v2 import UserCustomerResultAdaptor
import numpy as np
from concurrent import futures
import os

# 准备数据
from app.utils.draw import draw_month_return_chart, draw_contribution_chart, draw_combination_chart, \
    draw_old_combination_chart
from app.utils.html_to_pdf import html_to_pdf
from app.utils.radar_chart import gen_radar_chart


class DataIntegrate:
    def __init__(self, ifa_id='USER_INFO15914346866762', customer_id='202009281545001', pdf_name=str(uuid.uuid4()) + '.pdf'):
        self.user_customer = UserCustomerResultAdaptor(ifa_id, customer_id)
        self.customer_name = self.user_customer.customer_real_name
        self.pdf_name = pdf_name
        self.df = self.user_customer.calculate_total_data()
        self.d = self.user_customer.calculate_group_result_data()
        # 组合数据
        self.group_result = self.d["default"]
        self.get_portfolio_diagnose(self.group_result["fund_id_list"])
        # 投资总览
        self.get_summarize()
        # 月度回报
        self.get_month_return()
        # 月度回报表格
        self.get_month_table_return()
        # 旧持仓组合点评
        self.comments_on_position_portfolio()
        # 贡献分解
        self.contribution_deco()
        # 目标与业绩
        self.objectives_performance(self.group_result)
        # 个基点评
        self.single_fund_comment()
        # 旧收益比较
        self.get_old_compare_pic()
        # 旧相关性
        self.get_old_correlation()
        # # 新增基金
        # self.propose_fund()
        # # 新收益比较
        # self.get_transfer_suggestions()
        # # 新相关性
        # self.get_new_correlation()
        # 渲染模版
        self.render_data()

    def get_portfolio_diagnose(self, portfolio, client_type=1, invest_amount=10000000):
        self.portfolio_diagnose = PortfolioDiagnose(client_type=client_type, portfolio=portfolio, invest_amount=invest_amount)
        self.portfolio_diagnose.optimize()

    def get_summarize(self):
        """投资总览."""
        self.total_cost = round(self.df["total_cost"], 2)   # 投资成本
        self.now_yield = round((self.df['cumulative_return']-1)*100, 2)     # 成立以来累计收益率
        self.now_annualised_return = round(self.df["return_ratio_year"] * 100, 2)  # 年化收益率
        self.index_yield = round((self.df["index_result"]["return_ratio"]-1)*100, 2)    # 指数收益率
        self.now_withdrawal = round(self.df["max_drawdown"][0]*100, 2)  # 最大回撤
        self.index_withdrawal = round(self.df["index_result"]["max_drawdown"][0]*100, 2)    # 指数最大回撤
        self.now_month_income = int(self.df["cur_month_profit"])  # 本月收益
        self.month_rise = round(self.df["cur_month_profit_ratio"] * 100, 2)  # 本月涨幅
        self.year_totoal_rate_of_return = round(self.df["cur_year_profit_ratio"] * 100, 2)  # 今年累计收益率
        self.now_year_income = int(self.df["cur_year_profit"])  # 今年累计收益
        self.final_balance = int(self.df["total_cost"] + self.df["cumulative_profit"])  # 期末资产
        self.total_profit = int(self.df["cumulative_profit"])  # 累计盈利

    def get_month_return(self):
        """月度回报."""
        xlabels, product_list, cumulative = self.user_customer.get_month_return_chart()
        self.monthly_return_performance_pic = draw_month_return_chart(xlabels, product_list, cumulative)

    def get_month_table_return(self):
        self.monthly_table_return = self.df["month_return_data_dict"]

    def comments_on_position_portfolio(self):
        """旧持仓组合点评. 旧贡献分解数据"""
        self.old_evaluation, self.old_return_compare_data, self.old_indicator_compare = self.portfolio_diagnose.old_evaluation('default', self.d, self.user_customer)

    def contribution_deco(self):
        """贡献分解."""
        g_data = self.group_result["contribution_decomposition"]
        self.contribution_decomposition = draw_contribution_chart(g_data['xlabels'], g_data['product_list'], g_data['cumulative'])

    def single_fund_comment(self):
        """个基点评."""
        self.single_fund_data_list = []
        portfolio_evaluation = self.portfolio_diagnose.old_portfolio_evaluation()
        radar_chart_data = self.portfolio_diagnose.single_fund_radar()
        with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
            res = executor.map(gen_radar_chart, radar_chart_data)
        res = list(res)
        for i in range(len(portfolio_evaluation)):
            if portfolio_evaluation[i]['status'] == '保留':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl">保留</div>'
            elif portfolio_evaluation[i]['status'] == '增仓':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl red">增仓</div>'
            elif portfolio_evaluation[i]['status'] == '换仓':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl green">换仓</div>'
            elif portfolio_evaluation[i]['status'] == '减仓':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl green">减仓</div>'
            self.single_fund_data_list.append({
                'fund_name': portfolio_evaluation[i]['name'],
                'status': portfolio_evaluation[i]['status'],
                'evaluation': portfolio_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })

    def get_old_compare_pic(self):
        """旧收益比较"""
        self.old_return_compare_pic = draw_old_combination_chart(self.old_return_compare_data["xlabels"], self.old_return_compare_data["origin_combination"], self.old_return_compare_data["index"])

    def get_transfer_suggestions(self):
        """新收益比较,调仓建议"""
        self.suggestions_result, self.suggestions_result_asset, self.return_compare_data, \
        self.indicator_compare, self.new_group_evaluation = self.portfolio_diagnose.new_evaluation("default", self.d,
                                                                                                   self.user_customer)

        self.return_compare_pic = draw_combination_chart(self.return_compare_data["xlabels"], self.return_compare_data["new_combination"],
                                                         self.return_compare_data["origin_combination"], self.return_compare_data["index"])

    def get_old_correlation(self):
        """旧相关性分析."""
        old_correlation = self.portfolio_diagnose.old_correlation
        old_correlation_columns = old_correlation.columns.tolist()
        old_correlation_values = old_correlation.values.tolist()
        self.old_correlation = list(zip(range(1, len(old_correlation_columns)+1), old_correlation_columns, old_correlation_values))

    def get_new_correlation(self):
        """新相关性分析."""
        new_correlation = self.portfolio_diagnose.new_correlation
        new_correlation_columns = new_correlation.columns.tolist()
        new_correlation_values = new_correlation.values.tolist()
        self.new_correlation = list(zip(range(1, len(new_correlation_columns)+1), new_correlation_columns, new_correlation_values))

    def propose_fund(self):
        """新增基金"""
        # 优化组合建议1 -- 新增基金
        self.propose_fund_data_list = []
        propose_fund_evaluation = self.portfolio_diagnose.propose_fund_evaluation()
        propose_radar_chart_data = self.portfolio_diagnose.propose_fund_radar()
        with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
            res = executor.map(gen_radar_chart, propose_radar_chart_data)
        res = list(res)
        for i in range(len(propose_fund_evaluation)):
            self.propose_fund_data_list.append({
                'fund_name': propose_fund_evaluation[i]['name'],
                'status': '增仓',
                'evaluation': propose_fund_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        # for i in range(len(propose_fund_evaluation)):
        #     self.propose_fund_data_list.append({
        #         'fund_name': propose_fund_evaluation[i]['name'],
        #         'status': '增仓',
        #         'evaluation': propose_fund_evaluation[i]['data'],
        #         'radar_chart_path': gen_radar_chart(propose_radar_chart_data[i])
        #     })

    def objectives_performance(self, group_result):
        """目标与业绩"""

        self.totoal_rate_of_return = round((group_result['cumulative_return']-1)*100, 2)       # 成立以来累计收益率
        self.annualised_return = round(group_result["return_ratio_year"]*100, 2)     # 年化收益率
        self.volatility = round(group_result["volatility"]*100, 2)
        self.max_withdrawal = round(group_result["max_drawdown"][0]*100, 2)
        self.sharpe_ratio = round(group_result["sharpe"], 2)
        self.cost_of_investment = round(group_result["total_cost"]/10000.0, 2)    # 投资成本
        self.index_section_return = round((group_result["index_result"]["return_ratio"]-1)*100, 2)
        self.index_annualised_return = round(group_result["index_result"]["return_ratio_year"]*100, 2)     # 年化收益率
        self.index_volatility = round(group_result["index_result"]["volatility"]*100, 2)
        self.index_max_withdrawal = round(group_result["index_result"]["max_drawdown"][0]*100, 2)
        self.index_sharpe_ratio = round(group_result["index_result"]["sharpe"], 2)

        self.group_nav_info = group_result["group_nav_info"]
        self.group_hoding_info = group_result["group_hoding_info"]
        self.group_hoding_info_total = group_result["group_hoding_info_total"]


    def render_data(self):
        # 全部数据
        data = {
                # 封面 值为None不不显示,为block显示
                'box0': 'block',
                # 目录
                'box1': 'block',
                # 投资总览
                'box2': 'block',
                # 目标与业绩
                'box3': 'block',
                # 业绩的明细
                'box4': 'block',
                # 个基点评
                'box5': 'block',
                # 优化组合建议
                'box6': None,
                # 新增基金
                'box7': None,
                # 结尾
                'box8': 'block',
                'cover_back': template_folder + '/v2/img/cover-back.png',
                'logo': template_folder + '/v2/img/logo.png',
                'scene': template_folder + '/v2/img/scene.png',
                'team': template_folder + '/v2/img/team.png',
                'customer_name': self.customer_name,
                'customer_gender': '女',
                'year_month': self.user_customer.month_start_date.strftime("%Y-%m"),
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'ifa_company': '飞度工作室',
                'title': '10月综述',
                'brand_name': '资产管<br>理中心',
                'customer_old': 42, 'customer_level': '平衡型',
                # 'new_evaluation': self.new_evaluation,
                'position_years': '5年', 'planned_allocation_amount': 2000.00,
                'now_allocation_amount': self.total_cost, 'now_yield': self.now_yield, 'index_yield': self.index_yield,
                'expected_yield': 20, 'now_annualised_return': self.now_annualised_return,
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal, 'expected_withdrawal': 20,
                'now_year_income': self.now_year_income, 'now_month_income': self.now_month_income,
                'totoal_rate_of_return': self.totoal_rate_of_return,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'annualised_return': self.annualised_return, 'cost_of_investment': self.cost_of_investment,
                'final_balance': self.final_balance, 'total_profit': self.total_profit,
                'latest_worth_day': self.user_customer.last_nav_date,

                'index_comparison': {'section_return': self.totoal_rate_of_return, 'annualized_returns': self.annualised_return,
                                     'volatility': self.volatility, 'max_withdrawal': self.max_withdrawal,
                                     'sharpe_ratio': self.sharpe_ratio},
                'index_comparison_500': {'section_return': self.index_section_return,
                                         'annualized_returns': self.index_annualised_return,
                                         'volatility': self.index_volatility, 'max_withdrawal': self.index_max_withdrawal,
                                         'sharpe_ratio': self.index_sharpe_ratio},
                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'monthly_table_return': self.monthly_table_return,
                'group_nav_info': self.group_nav_info,
                'group_hoding_info': self.group_hoding_info,
                'group_hoding_info_total': self.group_hoding_info_total,
                'old_evaluation': self.old_evaluation,
                'old_indicator_compare': self.old_indicator_compare,
                'contribution_decomposition': self.contribution_decomposition,
                'single_fund_data_list': self.single_fund_data_list,
                'old_correlation': self.old_correlation,
                'old_return_compare_pic': self.old_return_compare_pic,
                # 'new_correlation': self.new_correlation,
                # 'propose_fund_data_list': self.propose_fund_data_list,
                # 'suggestions_result': self.suggestions_result,
                # 'suggestions_result_asset': self.suggestions_result_asset,
                # 'return_compare_pic': self.return_compare_pic,
                # 'indicator_compare': self.indicator_compare,
                # 'new_group_evaluation': self.new_group_evaluation
                'new_correlation': [],
                'propose_fund_data_list': [],
                'suggestions_result': {},
                'suggestions_result_asset': {},
                'return_compare_pic': [],
                'indicator_compare': [],
                'new_group_evaluation': []

                }
        # 开始渲染html模板
        env = Environment(loader=PackageLoader('app', 'templates'))  # 创建一个包加载器对象
        # template = env.get_template('monthReport.html')  # 获取一个模板文件
        template = env.get_template('/v2/monthReportV2.html')  # 获取一个模板文件
        monthReport_html = template.render(data)  # 渲染
        # 保存 monthReport_html
        # save_file = "app/html/monthReport.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)

        # save_file = "app/html/v2/monthReportV2.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
        html_to_pdf(monthReport_html, pdf_folder + self.pdf_name)



if __name__ == '__main__':
    start = time.time()
    DataIntegrate(ifa_id='USER_INFO15916072577875', customer_id='6716613804966817792')
    print('耗时{}秒'.format(round(time.time()-start, 2)))