data_service_v2_1.py 24.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/18 19:12
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : data_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sqlalchemy import and_
import tushare as ts
import datetime
import math
from decimal import Decimal
from app.api.engine import tamp_user_engine, tamp_product_engine, TAMP_SQL, tamp_fund_engine, tamp_diagnose_app_engine


# from app.model.tamp_user_models import CustomerOrder, CustomerInfo
# from app.model.tamp_product_models import FundInfo
from app.utils.fund_rank import get_frequency, get_trade_cal


class UserCustomerDataAdaptor:
    user_id = ""
    customer_id = ""
    customer_real_name = ""
    month_date = ""
    end_date = ""
    group_data = {}
    trade_cal_date = None
    all_fund_distribution = {}
    all_fund_performance = {}

    def __init__(self, user_id, customer_id, end_date=str("2020-12-31"), index_id="IN0000007M"):
        self.user_id = user_id
        self.customer_id = customer_id
        self.compare_index_id = index_id
        self.valueSex = ''
        p_end_date = pd.to_datetime(end_date).date()
        p_end_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1) - datetime.timedelta(days=1)
        self.end_date = pd.to_datetime(str(p_end_date))
        # self.end_date = pd.to_datetime("2020-12-25")
        p_start_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1)
        self.month_start_date = p_start_date
        # self.month_start_date = pd.to_datetime("2020-12-01")
        self.user_customer_order_df = self.get_user_customer_order_data()
        self.fund_nav_total, self.fund_cnav_total = self.get_customer_fund_nav_data()
        self.index_df = self.get_customer_index_nav_data()
        self.total_customer_order_cnav_df = self.total_combine_data()
        self.group_operate()

    @staticmethod
    def get_trade_cal(start_date, end_date):
        try:
            df = get_trade_cal()
            df = df[df["cal_date"] >= start_date]
            df.drop(['end_date'], axis=1, inplace=True)
            df.rename(columns={'cal_date': 'end_date'}, inplace=True)
            df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
            return df
        except:
            pass

        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
        df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))

        return df

    # 获取理财师下该用户所有订单列表
    def get_user_customer_order_data(self):

        with TAMP_SQL(tamp_fund_engine) as tamp_fund, TAMP_SQL(tamp_product_engine) as tamp_product, TAMP_SQL(tamp_diagnose_app_engine) as tamp_diagnose_app:
            tamp_diagnose_app_session = tamp_diagnose_app.session
            tamp_product_session = tamp_product.session
            tamp_fund_session = tamp_fund.session
            sql_user = """select f1.fund_id, f2.realname,f3.customer_name,f3.valueSex,f1.type,f1.order_type,f1.pay_date,f1.subscription_fee,f1.confirm_share_date,f1.confirm_share,f1.confirm_amount,f1.nav,f1.folio_name from tamp_diagnose_app.customer_order_view f1, tamp_user.user_info f2,tamp_diagnose_app.customer_view f3   where f2.id=f1.user_id and f3.id=f1.customer_id  and f1.delete_tag=0 and user_id='{}' and customer_id='{}'""".format(self.user_id, self.customer_id)
            cur = tamp_diagnose_app_session.execute(sql_user)
            data = cur.fetchall()
            order_df = pd.DataFrame(list(data), columns=['fund_id', 'username', 'customer_name', 'valueSex', 'type', 'order_type', 'pay_date',
                                                         'subscription_fee', 'confirm_share_date', 'confirm_share',
                                                         'confirm_amount', 'nav', 'folio_name'])
            cur_fund_id = list(order_df["fund_id"].unique())
            fund_list_str = str(cur_fund_id).replace("[", "(").replace("]", ")")

            sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
            cur = tamp_product_session.execute(sql_product)
            data = cur.fetchall()
            product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])

            if len(cur_fund_id) > 0:
                sql_fund = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info` where  `id` in {}".format(fund_list_str)
                cur = tamp_fund_session.execute(sql_fund)
                data = cur.fetchall()
                fund_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])

                if len(fund_df) > 0:
                    product_df = product_df.append(fund_df)
                    product_df = product_df.drop_duplicates("fund_id")

            user_customer_order_df = order_df.set_index('fund_id').join(product_df.set_index('fund_id')).reset_index()
            user_customer_order_df["confirm_share_date"] = user_customer_order_df["confirm_share_date"].apply(lambda x: pd.to_datetime(x.date()))
            self.customer_real_name = user_customer_order_df["customer_name"].values[0]
            self.ifa_real_name = user_customer_order_df["username"].values[0]
            self.valueSex = user_customer_order_df["valueSex"].values[0]
            user_customer_order_df = user_customer_order_df[user_customer_order_df["confirm_share_date"] <= self.end_date]
            user_customer_order_df["confirm_amount"] = user_customer_order_df["confirm_amount"] - user_customer_order_df["subscription_fee"]
            user_customer_order_df.index = pd.Series(range(len(user_customer_order_df)))

            for index, row in user_customer_order_df.iterrows():
                if row["order_type"] == 2:
                    need_less_share = row["confirm_share"]
                    for index_ori, row_ori in user_customer_order_df.iterrows():
                        if index_ori >= index:
                            break
                        if row["fund_id"] == row_ori["fund_id"] and row_ori["order_type"] == 1:
                            ori_share = row_ori["confirm_share"]
                            if need_less_share >= ori_share:
                                need_less_share -= ori_share
                                user_customer_order_df.loc[index_ori, "confirm_share"] = 0
                            else:
                                need_less_share = 0
                                user_customer_order_df.loc[index_ori, "confirm_share"] = row_ori[
                                                                                           "confirm_share"] - need_less_share
                            if need_less_share <= 0:
                                break
            user_customer_order_df = user_customer_order_df[(user_customer_order_df["order_type"] == 1)&(user_customer_order_df["confirm_share"] > 0)]
            user_customer_order_df.index = pd.Series(range(len(user_customer_order_df)))
            self.start_date = user_customer_order_df["confirm_share_date"].min()
            return user_customer_order_df

    # 获取客户持有的基金净值数据
    def get_customer_fund_nav_data(self):
        with TAMP_SQL(tamp_product_engine) as tamp_product, TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_product_session = tamp_product.session
            tamp_fund_session = tamp_fund.session
            now_date = datetime.datetime.now().strftime("%Y%m%d")
            trade_date_df = self.get_trade_cal("20000101", now_date)
            self.trade_cal_date = trade_date_df
            all_fund_nav = pd.DataFrame(index=trade_date_df["datetime"])
            all_fund_cnav = pd.DataFrame(index=trade_date_df["datetime"])

            temp_fund_id = []
            # for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
            for index, row in self.user_customer_order_df.iterrows():
                cur_fund_id = row["fund_id"]
                if cur_fund_id in temp_fund_id:
                    continue
                else:
                    temp_fund_id.append(cur_fund_id)
                fund_type = row["type"]
                # 对应基金净值
                if fund_type == 0:
                    sql = """select distinct `end_date`, `unit_nav`,`accum_nav` from `public_fund_nav` where `id`='{}'  order by `end_date` ASC""".format(cur_fund_id)
                    cur = tamp_fund_session.execute(sql)
                elif fund_type == 1:
                    sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                        cur_fund_id)
                    cur = tamp_fund_session.execute(sql)
                elif fund_type == 2:
                    sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                        cur_fund_id)
                    cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_nav_df = pd.DataFrame(list(data), columns=['price_date', 'nav', 'cnav'])

                # # 对应基金分红
                sql = """select distinct `distribute_date`, `distribution` from `fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_distribution_df = pd.DataFrame(list(data), columns=['price_date', 'distribution'])
                self.all_fund_distribution[cur_fund_id] = cur_fund_distribution_df

                # 对应基金performance数据
                sql = """select distinct `price_date`, `ret_1w`, `ret_cum_1m`, `ret_cum_6m`, `ret_cum_1y`, `ret_cum_ytd`, `ret_cum_incep` from `fund_performance` where `fund_id`='{}' order by `price_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_performance_df = pd.DataFrame(list(data),
                columns=['price_date', 'ret_1w', 'ret_cum_1m', 'ret_cum_6m', 'ret_cum_1y', 'ret_cum_ytd', 'ret_cum_incep'])
                cur_fund_performance_df = cur_fund_performance_df[
                    cur_fund_performance_df["price_date"] <= self.end_date.date()]
                self.all_fund_performance[cur_fund_id] = cur_fund_performance_df

                cur_fund_nav_df["price_date"] = pd.to_datetime(cur_fund_nav_df["price_date"])
                cur_fund_nav_df.drop_duplicates(subset="price_date", keep='first', inplace=True)
                cur_fund_nav_df.set_index("price_date", inplace=True)
                cur_fund_nav_df = cur_fund_nav_df[cur_fund_nav_df.index.isin(all_fund_nav.index)]

                if math.isnan(row["freq"]):
                    try:
                        freq = get_frequency(cur_fund_nav_df)
                    except:
                        freq = 250
                    timeoffset_dict = {250: 1, 52: 5, 12: 30, 24: 15, 3: 120}
                    self.user_customer_order_df.loc[index, "freq"] = timeoffset_dict[freq]

                all_fund_nav[cur_fund_id] = cur_fund_nav_df["nav"]
                all_fund_cnav[cur_fund_id] = cur_fund_nav_df["cnav"]

            all_fund_nav = all_fund_nav[all_fund_nav.index <= self.end_date]
            all_fund_cnav = all_fund_cnav[all_fund_cnav.index <= self.end_date]
            # for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
            #     all_fund_nav[cur_fund_id][all_fund_nav[cur_fund_id].apply(lambda x: math.isnan(x))]=np.nan
            #     all_fund_cnav[cur_fund_id][all_fund_cnav[cur_fund_id].apply(lambda x: math.isnan(x))] = np.nan
            self.last_nav_date = str(all_fund_cnav.dropna(how="all").index.values[-1])[:10]
            return all_fund_nav, all_fund_cnav

    # 获取客户对比指数净值数据
    def get_customer_index_nav_data(self, index_id="IN0000007M"):
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            sql = "select distinct price_date,close from fund_market_indexes where index_id='{}'  order by price_date ASC".format(index_id)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            index_df = pd.DataFrame(list(data), columns=['price_date', 'index'])
            index_df["price_date"] = pd.to_datetime(index_df["price_date"])
            index_df.set_index("price_date", inplace=True)
            self.fund_cnav_total["index"] = index_df["index"]
            self.index_df = index_df

            return index_df

    # 分组合计算
    def group_operate(self):
        for folio in self.user_customer_order_df["folio_name"].unique():
            cur_folio_order_df = self.user_customer_order_df[self.user_customer_order_df["folio_name"] == folio]
            fund_id_list = list(self.user_customer_order_df["fund_id"].unique())
            cur_folio_nav_df = self.fund_nav_total[fund_id_list]
            # fund_id_list.append("index")
            cur_folio_cnav_df = self.fund_cnav_total[fund_id_list]
            self.signal_folio_operate(folio, cur_folio_order_df, cur_folio_nav_df, cur_folio_cnav_df)
            continue

    # 单个组合数据操作
    def signal_folio_operate(self, p_folio, p_order_df, p_nav_df, p_cnav_df):
        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())

        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(p_nav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            # if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
            #     last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     # 判断上个净值日和当前确认日之中是否存在分红日
            #     """need add judge"""
            #
            #     if len(last_nav_data) < 1:
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
            #     else:
            #         diff_nav = row["nav"] - last_nav_data.values[0]
            #         cur_cnav = last_cnav_data.values[0] + diff_nav
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

            if cur_fund_id+"_amount" not in cnav_df:
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
                cnav_df[cur_fund_id + "_profit"] = profit
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                cnav_df[cur_fund_id+"_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

            # buy
            if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
            # sell
            elif row['order_type'] == 2:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]

            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_profit"] * cnav_df[cur_fund_id + "_share"]
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_earn"].apply(lambda x: float(x))
            # cnav_df[cur_fund_id + "_cum_earn"] = cnav_df[cur_fund_id + "_earn"].cumsum()

        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
        self.group_data[p_folio] = {"result_cnav_data": cnav_df, "order_df": p_order_df}
        return cnav_df

    # 所有的数据操作
    def total_combine_data(self):

        p_order_df = self.user_customer_order_df.copy()
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(p_nav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in cnav_df:
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
                cnav_df[cur_fund_id + "_profit"] = profit
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                cnav_df[cur_fund_id + "_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

                # profit = cnav_df[cur_fund_id].dropna() - cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit"] = profit
                # cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_profit_ratio"] = profit / cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_amount"] = 0
                # cnav_df[cur_fund_id + "_earn"] = 0
                # cnav_df[cur_fund_id + "_cum_earn"] = 0
                # cnav_df[cur_fund_id + "_share"] = 0

            # buy
            if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
            # sell
            elif row['order_type'] == 2:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]

        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]

            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]

        return cnav_df