1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# -*- encoding: utf-8 -*-
# -----------------------------------------------------------------------------
# @File Name : draw.py
# @Time : 2020/11/19 上午10:51
# @Author : X. Peng
# @Email : acepengxiong@163.com
# @Software : PyCharm
# -----------------------------------------------------------------------------
import base64
from urllib import parse
from io import BytesIO
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker
from matplotlib.ticker import FuncFormatter
from matplotlib.font_manager import FontProperties
# 中文字体初始化
plt.rcParams['font.sans-serif']=['Heiti TC']
def to_percent(temp, position):
return '%.2f' % temp + '%'
def draw_month_return_chart(xlabels, product_list, cumulative):
"""月度回报表现图"""
# plt.title('Scores by group and gender')
# plt.ylabel('Scores')
figsize = (24, 12)
# 标签文字大小
fontsize = 15
# 初始化
fig = plt.figure(figsize=figsize)
ax1 = fig.add_subplot(111)
ax2 = ax1.twinx()
max_x_count = max([x['data'].size for x in product_list])
loc = np.arange(max_x_count) # the x locations for the groups
width = 0.35 # the width of the bars: can also be len(x) sequence
color_list = ['#222A77', '#6C71AA', '#E1BC95', '#F9DBB8']
# 坐标轴
ax1.tick_params(labelsize=fontsize)
ax2.tick_params(labelsize=fontsize)
# 坐标轴颜色
ax2.tick_params(axis='y', colors='#C6A774')
ax1.set_xticks(loc)
ax1.set_xticklabels(xlabels)
# ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
ax2.yaxis.set_major_formatter(FuncFormatter(to_percent))
# temp_rate = np.zeros(max_x_count)
# for i in range(len(product_list)):
# temp_rate += product_list[i]['data']
# max_rate = np.max(np.hstack((temp_rate, cumulative['data'])))
# ax2.set_ylim(0, max_rate + 15)
# 柱状图
prod_legend = []
for i in range(len(product_list)):
ax = None
bottom = np.zeros(max_x_count)
if i == 0:
ax = ax1.bar(loc, product_list[i]['data'], width, color=color_list[i], alpha=0.8)
else:
for j in range(i):
bottom = bottom + product_list[j]['data']
if i < len(color_list):
ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, color=color_list[i], alpha=0.8)
else:
ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, alpha=0.8)
for a, b in zip(range(len(xlabels)), product_list[0]['data']):
if b > 0:
ax1.text(a, b+0.2, '%.0f万' % b, ha='center', va='bottom', fontsize=fontsize)
elif b < 0:
ax1.text(a, b-0.5, '%.0f万' % b, ha='center', va='top', fontsize=fontsize)
prod_legend.append(ax[0])
ax1.legend(prod_legend, [prod['name'] for prod in product_list], loc='upper left', fontsize=fontsize)
# 画折线图
ax2.plot(loc, cumulative['data'], color='#C6A774', marker='', linewidth=3, label=cumulative['name'])
# 添加数字标签
for a, b in zip(range(len(xlabels)), cumulative['data']):
ax2.text(a, b + 0.1, '%.2f' % b + '%', ha='center', va='bottom', fontsize=fontsize)
ax2.legend(loc='upper center', fontsize=fontsize)
# plt.show()
imgdata = BytesIO()
fig.savefig(imgdata, format='png', bbox_inches='tight')
imgdata.seek(0) # rewind the data
month_return_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
return month_return_img
def draw_contribution_chart(xlabels, product_list, cumulative):
"""贡献分解图"""
# plt.title('Scores by group and gender')
# plt.ylabel('Scores')
figsize = (25, 12)
# 标签文字大小
fontsize = 22
# 初始化
fig = plt.figure(figsize=figsize)
ax1 = fig.add_subplot()
ax2 = ax1.twiny()
max_x_count = max([x['data'].size for x in product_list])
loc = np.arange(max_x_count) # the x locations for the groups
width = 0.35 # the width of the bars: can also be len(x) sequence
color_list = ['#222A77', '#6C71AA', '#E1BC95', '#F9DBB8']
# 坐标轴
ax1.tick_params(labelsize=fontsize)
ax1.set_xticks(loc)
ax1.set_xticklabels(xlabels)
ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
# temp_rate = np.zeros(max_x_count)
# for i in range(len(product_list)):
# temp_rate += product_list[i]['data']
# max_rate = np.max(np.hstack((temp_rate, cumulative['data'])))
ax2.set_xticks([])
# ax2.set_ylim(0, max_rate + 10)
# 堆叠柱状图
prod_legend = []
for i in range(len(product_list)):
ax = None
bottom = np.zeros(max_x_count)
if i == 0:
ax = ax1.bar(loc, product_list[i]['data'], width, color=color_list[i], alpha=0.8)
else:
for j in range(i):
bottom = bottom + product_list[j]['data']
if i < len(color_list):
ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, color=color_list[i], alpha=0.8)
else:
ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, alpha=0.8)
prod_legend.append(ax[0])
ax1.legend(prod_legend, [prod['name'] for prod in product_list], bbox_to_anchor=(0.9, -0.1), ncol=4, fontsize=fontsize)
# 画折线图
ax2.plot(loc, cumulative['data'], color='#C6A774', marker='', linewidth=3, label=cumulative['name'])
ax2.legend(loc='upper left', fontsize=fontsize)
imgdata = BytesIO()
fig.savefig(imgdata, format='png', bbox_inches='tight')
imgdata.seek(0) # rewind the data
month_return_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
return month_return_img
# def draw_contribution_chart(xlabels, product_list, cumulative):
# """贡献分解图"""
#
# # plt.title('Scores by group and gender')
# # plt.ylabel('Scores')
# figsize = (25, 12)
# # 标签文字大小
# fontsize = 22
# # 初始化
# fig = plt.figure(figsize=figsize)
# ax1 = fig.add_subplot()
# ax2 = ax1.twiny()
# max_x_count = max([x['data'].size for x in product_list])
# loc = np.arange(max_x_count) # the x locations for the groups
# width = 0.35 # the width of the bars: can also be len(x) sequence
# color_list = ['#222A77', '#6C71AA', '#E1BC95', '#F9DBB8']
#
# # 坐标轴
# ax1.tick_params(labelsize=fontsize)
# ax1.set_xticks(loc)
# ax1.set_xticklabels(xlabels)
# ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
# # temp_rate = np.zeros(max_x_count)
# # for i in range(len(product_list)):
# # temp_rate += product_list[i]['data']
# # max_rate = np.max(np.hstack((temp_rate, cumulative['data'])))
# ax2.set_xticks([])
# # ax2.set_ylim(0, max_rate + 10)
#
# # 堆叠柱状图
# prod_legend = []
# for i in range(len(product_list)):
# ax = None
# for j in range(len(product_list[i]['data'])):
# product_list[i]['bottom'] = product_list[i].get('bottom', 0)
# product_list[i]['bottom_neg'] = product_list[i].get('bottom_neg', 0)
# if j > 0:
# product_list[i]['bottom'] += product_list[i].get('bottom', 0)
# product_list[i]['bottom_neg'] += product_list[i].get('bottom_neg', 0)
# if i < len(color_list):
# for x in loc:
# if product_list[i]['data'][x] >= 0:
# ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom'], color=color_list[i], alpha=0.8)
# else:
# ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom_neg'],
# color=color_list[i], alpha=0.8)
# else:
# for x in loc:
# if product_list[i]['data'][x] >= 0:
# ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom'], alpha=0.8)
# else:
# ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom_neg'], alpha=0.8)
# prod_legend.append(ax[0])
# # ax1.legend(prod_legend, [prod['name'] for prod in product_list], bbox_to_anchor=(0.9, -0.1), ncol=4, fontsize=fontsize)
#
# # 画折线图
# ax2.plot(loc, cumulative['data'], color='#C6A774', marker='', linewidth=3, label=cumulative['name'])
# ax2.legend(loc='upper left', fontsize=fontsize)
#
# plt.show()
# # imgdata = BytesIO()
# # fig.savefig(imgdata, format='png', bbox_inches='tight')
# # imgdata.seek(0) # rewind the data
# # month_return_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
# # return month_return_img
def draw_comment_chart(xlabels, source_prod, target_prod):
"""个基点评图"""
figsize = (20, 12)
# 标签文字大小
fontsize = 22
# 初始化
fig = plt.figure(figsize=figsize)
ax1 = fig.add_subplot()
ax2 = ax1.twiny()
# ax = plt.gca() # gca:get current axis得到当前轴
# ax.spines['bottom'].set_position(('data', 0)) # data表示通过值来设置x轴的位置,将x轴绑定在y=0的位置
product_list = [source_prod, target_prod]
max_x_count = max([x['data'].size for x in product_list])
loc = np.arange(max_x_count) # the x locations for the groups
# 坐标轴
ax1.tick_params(labelsize=fontsize)
ax2.tick_params(labelsize=fontsize)
ax1.set_xticks(loc)
ax1.set_xticklabels(xlabels)
ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
max_rate = np.max(np.hstack((source_prod['data'], target_prod['data'])))
ax2.set_xticks([])
# 个基折线图
ax1.plot(loc, source_prod['data'], color='#C6A774', marker='', linewidth=3, label=source_prod['name'])
ax1.legend(loc='upper left', fontsize=fontsize)
# 指数折线图
ax2.plot(loc, target_prod['data'], color='black', marker='', linewidth=3, label=target_prod['name'])
ax2.legend(loc='upper center', fontsize=fontsize)
plt.show()
def draw_combination_chart(xlabels, new_combination, origin_combination, index):
"""组合对比图"""
figsize = (20, 12)
# 标签文字大小
fontsize = 22
# 初始化
fig = plt.figure(figsize=figsize)
ax1 = fig.add_subplot()
ax2 = ax1.twiny()
ax3 = ax1.twiny()
# ax = plt.gca() # gca:get current axis得到当前轴
# ax.spines['bottom'].set_position(('data', 0)) # data表示通过值来设置x轴的位置,将x轴绑定在y=0的位置
product_list = [origin_combination, new_combination, index]
max_x_count = max([x['data'].size for x in product_list])
loc = np.arange(max_x_count) # the x locations for the groups
# 坐标轴
ax1.tick_params(labelsize=fontsize)
ax2.tick_params(labelsize=fontsize)
ax3.tick_params(labelsize=fontsize)
ax1.set_xticks(loc)
ax1.set_xticklabels(xlabels)
ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
ax2.set_xticks([])
ax3.set_xticks([])
# 新组合折线图
ax1.plot(loc, new_combination['data'], color='#C6A774', marker='', linewidth=3, label=origin_combination['name'])
ax1.legend(loc='upper left', fontsize=fontsize)
# 原组合折线图
ax2.plot(loc, origin_combination['data'], color='#222A77', marker='', linewidth=3, label=new_combination['name'])
ax2.legend(loc='upper center', fontsize=fontsize)
# 指数折线图
ax3.plot(loc, index['data'], color='black', marker='', linewidth=3, label=index['name'])
ax3.legend(loc='upper right', fontsize=fontsize)
plt.show()
def draw_correlation_chart():
"""相关性分析图"""
pass
if __name__ == '__main__':
# xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
# product = {'name': '月度回报率', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
# contrast = {'name': '同比上涨', 'data': np.array([10, 50, 120, 100, 36, 0, 50, 120, 100, 36, 23, 98])}
# draw_month_return_chart(xlabels, [product], contrast)
xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
product1 = {'name': '塞亚成长1号', 'data': np.array([-10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product2 = {'name': '塞亚成长2号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product3 = {'name': '塞亚成长3号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product4 = {'name': '塞亚成长4号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product5 = {'name': '塞亚成长5号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product6 = {'name': '塞亚成长6号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product7 = {'name': '塞亚成长7号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product8 = {'name': '塞亚成长8号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
product_list = [product1, product2, product3, product4, product5, product6, product7, product8]
cumulative = {'name': '总收益', 'data': np.array([10, 50, 120, 100, 36, 0, 50, 120, 100, 36, 23, 98])}
draw_contribution_chart(xlabels, product_list, cumulative)
# xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
# source_prod = {'name': '远澜银杏1号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
# target_prod = {'name': '上证指数', 'data': np.array([-10, 10, 5, 55, 24, 10, 20, 8, 10, 31, 40, 32])}
# draw_comment_chart(xlabels, source_prod, target_prod)
# xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
# new_combination = {'name': '新组合', 'data': np.array([20, 30, 40, 50, 60, 20, 30, 40, 50, 60, 50, 60])}
# origin_combination = {'name': '原组合', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
# index = {'name': '上证指数', 'data': np.array([-10, 10, 5, 55, 24, 10, 20, 8, 10, 31, 40, 32])}
# draw_combination_chart(xlabels, new_combination, origin_combination, index)