1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time : 2020/11/23 15:29
# @Author : Jie. Z
# @Email : zhaojiestudy@163.com
# @File : result_service.py
# @Software: PyCharm
import pandas as pd
import numpy as np
import datetime
from decimal import Decimal
from app.service.data_service import UserCustomerDataAdaptor
from app.utils.week_evaluation import *
class UserCustomerResultAdaptor(UserCustomerDataAdaptor):
total_result_data = {}
group_result_data = {}
def __init__(self, user_id, customer_id, end_date=str(datetime.date.today())):
super().__init__(user_id, customer_id, end_date)
# 组合结果数据
def calculate_group_result_data(self):
for folio in self.group_data.keys():
folio_report_data = {}
cur_folio_result_cnav_data = self.group_data[folio]["result_cnav_data"]
cur_folio_order_data = self.group_data[folio]["order_df"]
freq_max = cur_folio_order_data["freq"].max()
first_trade_date = cur_folio_order_data["confirm_share_date"].min()
fund_id_list = list(cur_folio_order_data["fund_id"].unique())
fund_id_list_earn = [i + "_earn" for i in fund_id_list]
# fund_id_list_amount = [i + "_amount" for i in fund_id_list]
profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
# 组合收益率数组
# return_ratio_df, contribution_decomposition= self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
# resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <= self.end_date]
return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data,
fund_id_list)
resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
resample_df = resample_df[resample_df.index <= self.end_date]
# 收益分解df
contribution_decomposition_df = contribution_decomposition.fillna(0)*100
p_plot_data = []
for a_fund_id in list(contribution_decomposition_df.columns):
a_name = cur_folio_order_data[cur_folio_order_data["fund_id"]==a_fund_id]["fund_name"].values[0]
plot_data = {'name': a_name, 'data': contribution_decomposition_df[a_fund_id].astype(np.float64).values}
p_plot_data.append(plot_data)
x_lables_data = list(contribution_decomposition_df.index)
cumulative_data = {'name': '总收益', 'data': ((month_return_ratio_df["cum_return_ratio"] - 1)*100).values}
folio_report_data["contribution_decomposition"] = {"xlabels": x_lables_data, "product_list": p_plot_data,
"cumulative": cumulative_data}
# 总成本
total_cost = float(cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_amount"].sum() - \
cur_folio_order_data[cur_folio_order_data["order_type"] == 2]["confirm_amount"].sum())
folio_report_data["total_cost"] = total_cost
# 累积盈利
cumulative_profit = profit_df.sum().sum()
folio_report_data["cumulative_profit"] = float(cumulative_profit)
# 区间年化收益率
n_freq = freq_days(int(freq_max))
return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1]-1), resample_df, n_freq)
folio_report_data["return_ratio_year"] = float(return_ratio_year)
# 波动率
volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
folio_report_data["volatility"] = float(volatility_)
# 最大回撤
drawdown = max_drawdown(resample_df["cum_return_ratio"])
folio_report_data["max_drawdown"] = drawdown
# 夏普比率
sim = simple_return(resample_df["cum_return_ratio"])
exc = excess_return(sim, BANK_RATE, n_freq)
sharpe = sharpe_ratio(exc, sim, n_freq)
folio_report_data["sharpe"] = float(sharpe)
# 期末资产
ending_assets = cumulative_profit + total_cost
folio_report_data["ending_assets"] = float(ending_assets)
# 本月收益
cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date+datetime.timedelta(days=1), fund_id_list_earn]
cur_month_profit = cur_month_profit_df.sum().sum()
folio_report_data["cur_month_profit"] = float(cur_month_profit)
# 本月累积收益率
last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
cur_profit_ratio = return_ratio_df.loc[self.month_start_date:, "cum_return_ratio"].values
if len(last_profit_ratio) <= 0:
cur_month_profit_ratio = cur_profit_ratio[-1] - 1
else:
cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
folio_report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)
# 今年累积收益
cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
cur_year_profit = cur_year_profit_df.sum().sum()
folio_report_data["cur_year_profit"] = float(cur_year_profit)
# 今年累积收益率
last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
if len(last_profit_ratio) <= 0:
cur_year_profit_ratio = cur_profit_ratio[-1] - 1
else:
cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
folio_report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)
# 累积收益率
cumulative_return= return_ratio_df["cum_return_ratio"].values[-1]
folio_report_data["cumulative_return"] = float(cumulative_return)
# 月度分组
def year_month(x):
a = x.year
b = x.month
return str(a) + "/" + str(b)
profit_df_cp = profit_df.copy()
profit_df_cp["date"] = profit_df_cp.index
grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
sum_group = grouped.agg(np.sum)
month_sum = sum_group.sum(axis=1)
# 贡献分解
month_earn = sum_group.div(month_sum, axis='rows')
month_earn["datetime"] = pd.to_datetime(month_earn.index)
month_earn.sort_values(by="datetime", inplace=True)
del month_earn["datetime"]
col = list(month_earn.columns)
col_ = {x: x.replace('_earn', '') for x in list(col)}
month_earn.rename(columns=col_, inplace=True)
# folio_report_data["contribution_decomposition"] = month_earn
# 组合内单个基金净值数据 组合内基金持仓数据
result_fund_nav_info, result_fund_hoding_info = self.group_fund_basic_info_data(cur_folio_order_data, cur_folio_result_cnav_data, cumulative_profit, total_cost)
# 拼接组合以及综合结果数据
folio_report_data["group_nav_info"] = result_fund_nav_info
folio_report_data["group_hoding_info"] = result_fund_hoding_info
# 对应指数数据
index_df = self.get_customer_index_nav_data()
index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)],
"index")
folio_report_data["index_result"] = index_result
folio_report_data["return_df"] = resample_df
self.group_result_data[folio] = folio_report_data
return self.group_result_data
# 综述数据
def calculate_total_data(self):
report_data = {}
cur_folio_result_cnav_data = self.total_customer_order_cnav_df
cur_folio_order_data = self.user_customer_order_df
freq_max = cur_folio_order_data["freq"].max()
#
fund_id_list = list(cur_folio_order_data["fund_id"].unique())
fund_id_list_earn = [i + "_earn" for i in fund_id_list]
profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
# 持仓周期
first_trade_date = cur_folio_order_data["confirm_share_date"].min()
hold_days = (self.end_date - pd.to_datetime(first_trade_date)).days
report_data["hold_days"] = hold_days
# 组合收益率数组
# return_ratio_df = self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
# resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <=self.end_date]
return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data, fund_id_list)
resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
resample_df = resample_df[resample_df.index <= self.end_date]
# 总成本
total_cost = float(cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_amount"].sum() - \
cur_folio_order_data[cur_folio_order_data["order_type"] == 2]["confirm_amount"].sum())
report_data["total_cost"] = total_cost
#
# # 累积盈利
# cumulative_profit = profit_df.sum().sum()
# report_data["cumulative_profit"] = float(cumulative_profit)
#
# # 区间年化收益
# n_freq = freq_days(int(freq_max))
# return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1] - 1), resample_df, n_freq)
# report_data["return_ratio_year"] = float(return_ratio_year)
#
# # 波动率
# volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
# report_data["volatility"] = float(volatility_)
# 最大回撤
drawdown = max_drawdown(resample_df["cum_return_ratio"])
report_data["max_drawdown"] = drawdown
#
# # 夏普比率
# sim = simple_return(resample_df["cum_return_ratio"])
# exc = excess_return(sim, BANK_RATE, n_freq)
# sharpe = sharpe_ratio(exc, sim, n_freq)
# report_data["sharpe"] = float(sharpe)
#
# # 期末资产
# ending_assets = cumulative_profit + total_cost
# report_data["ending_assets"] = float(ending_assets)
#
# # 本月收益
# cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date + datetime.timedelta(days=1),
# fund_id_list_earn]
# cur_month_profit = cur_month_profit_df.sum().sum()
# report_data["cur_month_profit"] = float(cur_month_profit)
#
# # 本月累积收益率
# last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
# cur_profit_ratio = return_ratio_df.loc[self.month_start_date:, "cum_return_ratio"].values
# if len(last_profit_ratio) <= 0:
# cur_month_profit_ratio = cur_profit_ratio[-1] - 1
# else:
# cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
# report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)
#
# # 今年累积收益
# cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
# cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
# cur_year_profit = cur_year_profit_df.sum().sum()
# report_data["cur_year_profit"] = float(cur_year_profit)
#
# # 今年累积收益率
# last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
# cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
# if len(last_profit_ratio) <= 0:
# cur_year_profit_ratio = cur_profit_ratio[-1] - 1
# else:
# cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
# report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)
# 月度回报
def year_month(x):
a = x.year
b = x.month
return str(a) + "/" + str(b)
profit_df_cp = profit_df.copy()
profit_df_cp["date"] = profit_df_cp.index
grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
sum_group = grouped.agg(np.sum)
month_sum = sum_group.sum(axis=1)
return_ratio_df["date"] = return_ratio_df.index
return_group = return_ratio_df.groupby(return_ratio_df["date"].apply(year_month))
month_last_return_ratio = return_group.last()["cum_return_ratio"]
month_result = pd.DataFrame({"date": month_sum.index, "profit": month_sum.values, "ratio": month_last_return_ratio.values})
month_result["datetime"] = pd.to_datetime(month_result["date"])
month_result.sort_values(by="datetime", inplace=True)
report_data["month_return"] = month_result
# # 贡献分解
# month_earn = sum_group.div(month_sum, axis='rows')
# report_data["contribution_decomposition"] = month_earn
# 累积收益率
cumulative_return = return_ratio_df["cum_return_ratio"].values[-1]
report_data["cumulative_return"] = float(cumulative_return)
# 对应指数数据
index_df = self.get_customer_index_nav_data()
index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)], "index")
report_data["index_result"] = index_result
self.total_result_data = report_data
return report_data
# 基金净值数据,持仓数据
def group_fund_basic_info_data(self, p_order_df, p_result_cnav_data, p_sum_profit, p_total_amount):
group_fund_basic_info = []
group_fund_hoding_info = []
for index, row in p_order_df.iterrows():
cur_fund_id = str(row["fund_id"])
cur_fund_performance = self.all_fund_performance[cur_fund_id]
cur_fund_info_series = cur_fund_performance.iloc[-1]
# 基金净值数据
fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"],4)}
fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
fund_basic_info["ret_1w"] = round(cur_fund_info_series["ret_1w"]*100, 2) if cur_fund_info_series["ret_1w"] is not None else "-" # 上周
fund_basic_info["ret_cum_1m"] = round(cur_fund_info_series["ret_cum_1m"]*100, 2) if cur_fund_info_series["ret_cum_1m"] is not None else "-" # 最近一个月
fund_basic_info["ret_cum_6m"] = round(cur_fund_info_series["ret_cum_6m"]*100, 2) if cur_fund_info_series["ret_cum_6m"] is not None else "-" # 最近半年
fund_basic_info["ret_cum_1y"] = round(cur_fund_info_series["ret_cum_1y"]*100, 2) if cur_fund_info_series["ret_cum_1y"] is not None else "-" # 最近一年
fund_basic_info["ret_cum_ytd"] = round(cur_fund_info_series["ret_cum_ytd"]*100, 2) if cur_fund_info_series["ret_cum_ytd"] is not None else "-" # 今年以来
fund_basic_info["ret_cum_incep"] = round(cur_fund_info_series["ret_cum_incep"]*100, 2) if cur_fund_info_series["ret_cum_incep"] is not None else "-" # 成立以来
# 申购以来
confirm_date = pd.to_datetime(row["confirm_share_date"])
confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
fund_basic_info["ret_after_confirm"] = round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)
# 分红
distribution_df = self.all_fund_distribution[cur_fund_id]
if distribution_df.empty:
fund_basic_info["distribution"] = "-"
else:
distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
distribution = float(distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"
group_fund_basic_info.append(fund_basic_info)
# 基金持仓数据
fund_hoding_info = {"fund_strategy_name": dict_substrategy[int(row["substrategy"])], "fund_name": row["fund_name"]}
fund_hoding_info["confirm_date"] = row["confirm_share_date"]
fund_hoding_info["weight"] = round(float(row["confirm_amount"]) / p_total_amount * 100, 2)
fund_hoding_info["market_values"] = round((float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"]))/10000, 2)
fund_hoding_info["cost"] = round(float(row["confirm_amount"])/10000, 2)
fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav)/10000, 2)
# fund_hoding_info["ykb"] = fund_hoding_info["profit"] / fund_hoding_info["cost"]
try:
fund_hoding_info["ykb"] = round(float(gain_loss_ratio(p_result_cnav_data[cur_fund_id + "_profit"].dropna()))*100, 2)
except:
fund_hoding_info["ykb"] = "-"
fund_hoding_info["profit_contribution"] = round(fund_hoding_info["profit"]*10000 / p_sum_profit*100, 2)
group_fund_hoding_info.append(fund_hoding_info)
return group_fund_basic_info, group_fund_hoding_info
@staticmethod
def combination_yield(p_combina_df, fund_id_list):
fund_id_list_amount = [i + "_net_amount" for i in fund_id_list]
fund_id_list_profit_ratio = [i + "_profit_ratio" for i in fund_id_list]
nav_net_amount_df = p_combina_df[fund_id_list + fund_id_list_amount+fund_id_list_profit_ratio].copy()
# nav_net_amount_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
nav_net_amount_df["sum_net_amount"] = nav_net_amount_df[fund_id_list_amount].sum(axis=1).apply(lambda x: Decimal.from_float(x))
for amount_name in fund_id_list:
nav_net_amount_df[amount_name+"_amount_ratio"] = nav_net_amount_df[amount_name+"_net_amount"]/(nav_net_amount_df["sum_net_amount"])
nav_net_amount_df[amount_name+"_profit_ratio_weight"] = nav_net_amount_df[amount_name+"_amount_ratio"].shift(1) * nav_net_amount_df[amount_name+"_profit_ratio"]
fund_profit_ratio = nav_net_amount_df[amount_name + "_profit_ratio"].dropna() + 1
nav_net_amount_df[amount_name + "_profit_cum_ratio_weight"] = (fund_profit_ratio.cumprod()-1)*nav_net_amount_df[amount_name+"_amount_ratio"].shift(1)
# enter_date = nav_net_amount_df[amount_name+"_profit_ratio"].dropna()
fund_id_list_profit_ratio_weight = [i + "_profit_ratio_weight" for i in fund_id_list]
nav_profit_ratio_weight = nav_net_amount_df[fund_id_list_profit_ratio_weight].copy().fillna(method='ffill')
# 组合收益率
return_ratio = nav_profit_ratio_weight.sum(axis=1)
# 组合累积收益率
# return_ratio_list = list(return_ratio.values)
cum_return_ratio = (return_ratio + 1).fillna(0).cumprod()
# 收益率df
cum_return_ratio_df = pd.DataFrame(return_ratio.values, columns=["return_ratio"])
cum_return_ratio_df["cum_return_ratio"] = cum_return_ratio.values
cum_return_ratio_df.index = return_ratio.index
# 单个基金累计收益分解df
weight_name_list = [i + "_profit_cum_ratio_weight" for i in fund_id_list]
signal_fund_cum_weight = nav_net_amount_df[weight_name_list]
re_name = {x: x.replace("_profit_cum_ratio_weight", "") for x in weight_name_list}
signal_fund_cum_weight.rename(columns=re_name, inplace=True)
# 月度分组
def year_month(x):
a = x.year
b = x.month
return str(a) + "/" + str(b)
profit_df_cp = signal_fund_cum_weight.copy()
profit_df_cp["date"] = list(profit_df_cp.index)
grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
month_signal_fund_cum = grouped.last()
month_signal_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
month_signal_fund_cum.sort_values(by="datetime", inplace=True)
del month_signal_fund_cum["datetime"]
p_cum_df = cum_return_ratio_df.copy()
p_cum_df["date"] = list(p_cum_df.index)
cum_grouped = p_cum_df.groupby(p_cum_df["date"].apply(year_month))
month_fund_cum = cum_grouped.last()
month_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
month_fund_cum.sort_values(by="datetime", inplace=True)
del month_fund_cum["datetime"]
return cum_return_ratio_df, month_fund_cum, month_signal_fund_cum
@staticmethod
def signal_fund_profit_result(p_fund_nav_df, cur_fund_id):
result = {"fund_id": cur_fund_id}
fund_nav_df = p_fund_nav_df.copy()
profit = fund_nav_df[cur_fund_id].dropna() - fund_nav_df[cur_fund_id].dropna().shift(1)
fund_nav_df[cur_fund_id + "_profit"] = profit
fund_nav_df[cur_fund_id + "_profit_ratio"] = profit / fund_nav_df[cur_fund_id].dropna().shift(1)
# 累积收益率
return_ratio_list = list(fund_nav_df[cur_fund_id + "_profit_ratio"].astype("float64").values)
cum_return_ratio = []
last_ratio = 0
for i in range(len(return_ratio_list)):
if i == 0:
last_ratio = 1 + return_ratio_list[i] if str(return_ratio_list[0]) != 'nan' else 1
cum_return_ratio.append(last_ratio)
continue
cur_ratio = (1 + return_ratio_list[i]) * last_ratio
cum_return_ratio.append(cur_ratio)
last_ratio = cur_ratio
fund_nav_df['cum_return_ratio'] = cum_return_ratio
# 区间收益率
result["return_ratio"] = cum_return_ratio[-1]
# 区间年化收益
n_freq = freq_days(1)
return_ratio_year = annual_return((fund_nav_df["cum_return_ratio"].values[-1] - 1), fund_nav_df, n_freq)
result["return_ratio_year"] = float(return_ratio_year)
# 波动率
volatility_ = volatility(fund_nav_df["cum_return_ratio"], n_freq)
result["volatility"] = float(volatility_)
# 最大回撤
drawdown = max_drawdown(fund_nav_df["cum_return_ratio"])
result["max_drawdown"] = drawdown
# 夏普比率
sim = simple_return(fund_nav_df["cum_return_ratio"])
exc = excess_return(sim, BANK_RATE, n_freq)
sharpe = sharpe_ratio(exc, sim, n_freq)
result["sharpe"] = float(sharpe)
return result
def get_month_return_chart(self):
res = self.total_result_data["month_return"]
xlabels = res["date"].values
res["profit"] = res["profit"].apply(lambda x: round(x/100.0, 2))
res["ratio"] = res["ratio"].apply(lambda x: round((x-1)*100, 2))
product_list = {'name': '月度回报', 'data': res["profit"].values}
cumulative = {'name': '累积收益', 'data': res["ratio"].values}
return xlabels, [product_list], cumulative
def get_total_basic_data(self):
return self.total_result_data
def get_group_data(self):
return self.group_result_data