data_service.py 20.6 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/18 19:12
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : data_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sqlalchemy import and_
赵杰's avatar
赵杰 committed
12 13
import tushare as ts
import datetime
赵杰's avatar
赵杰 committed
14
import math
15
from decimal import Decimal
李宗熹's avatar
李宗熹 committed
16
from app.api.engine import tamp_user_engine, tamp_product_engine, TAMP_SQL
17 18
# from app.model.tamp_user_models import CustomerOrder, CustomerInfo
# from app.model.tamp_product_models import FundInfo
赵杰's avatar
赵杰 committed
19
from app.utils.fund_rank import get_trade_cal
赵杰's avatar
赵杰 committed
20 21 22 23 24


class UserCustomerDataAdaptor:
    user_id = ""
    customer_id = ""
赵杰's avatar
赵杰 committed
25
    customer_real_name = ""
26
    month_date = ""
赵杰's avatar
赵杰 committed
27
    end_date = ""
赵杰's avatar
赵杰 committed
28
    group_data = {}
赵杰's avatar
赵杰 committed
29
    trade_cal_date = None
30 31
    all_fund_distribution = {}
    all_fund_performance = {}
赵杰's avatar
赵杰 committed
32

33
    def __init__(self, user_id, customer_id, end_date=str(datetime.date.today()), index_id="IN0000007M"):
赵杰's avatar
赵杰 committed
34 35
        self.user_id = user_id
        self.customer_id = customer_id
36
        self.compare_index_id = index_id
赵杰's avatar
赵杰 committed
37 38
        p_end_date = pd.to_datetime(end_date).date()
        p_end_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1) - datetime.timedelta(days=1)
39
        self.end_date = pd.to_datetime(str(p_end_date))
赵杰's avatar
赵杰 committed
40
        self.end_date = pd.to_datetime("2020-12-11")
41
        p_start_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1)
42
        self.month_start_date = p_start_date
pengxiong's avatar
2  
pengxiong committed
43
        self.month_start_date = pd.to_datetime("2020-11-01")
赵杰's avatar
赵杰 committed
44
        self.user_customer_order_df = self.get_user_customer_order_data()
45
        self.fund_nav_total, self.fund_cnav_total = self.get_customer_fund_nav_data()
46
        self.index_df = self.get_customer_index_nav_data()
47
        self.total_customer_order_cnav_df = self.total_combine_data()
赵杰's avatar
赵杰 committed
48 49 50 51
        self.group_operate()

    @staticmethod
    def get_trade_cal(start_date, end_date):
赵杰's avatar
赵杰 committed
52 53 54 55 56 57 58 59 60 61
        try:
            df = get_trade_cal()
            df = df[df["cal_date"] >= start_date]
            df.drop(['end_date'], axis=1, inplace=True)
            df.rename(columns={'cal_date': 'end_date'}, inplace=True)
            df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
            return df
        except:
            pass

赵杰's avatar
赵杰 committed
62 63 64 65 66 67 68 69 70
        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
        df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
71

赵杰's avatar
赵杰 committed
72
        return df
赵杰's avatar
赵杰 committed
73 74 75

    # 获取理财师下该用户所有订单列表
    def get_user_customer_order_data(self):
76 77
        # data1 = tamp_user_session.query(CustomerOrder)\
        #         #     .filter(user_id = self.user_id).all()
赵杰's avatar
赵杰 committed
78 79
        # data2 = tamp_user_session.query(t_customer_info).all()
        # data3 = tamp_product_session.query(t_fund_info).all()
李宗熹's avatar
李宗熹 committed
80 81 82
        with TAMP_SQL(tamp_user_engine) as tamp_user, TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_user_session = tamp_user.session
            tamp_product_session = tamp_product.session
83
            sql_user = """select f1.id, f2.realname,f3.customer_name,fund_id,f1.order_type,f1.pay_date,f1.subscription_fee,f1.confirm_share_date,f1.confirm_share,f1.confirm_amount,f1.nav,f1.folio_name from customer_order f1, user_info f2,customer_info f3   where f2.id=f1.user_id and f3.id=f1.customer_id and f1.user_id='{}' and f1.customer_id='{}'""".format(self.user_id, self.customer_id)
李宗熹's avatar
李宗熹 committed
84 85
            cur = tamp_user_session.execute(sql_user)
            data = cur.fetchall()
86
            order_df = pd.DataFrame(list(data), columns=['order_id', 'username', 'customer_name', 'fund_id', 'order_type', 'pay_date',
李宗熹's avatar
李宗熹 committed
87 88
                                                         'subscription_fee', 'confirm_share_date', 'confirm_share',
                                                         'confirm_amount', 'nav', 'folio_name'])
赵杰's avatar
赵杰 committed
89

李宗熹's avatar
李宗熹 committed
90 91 92 93
            sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
            cur = tamp_product_session.execute(sql_product)
            data = cur.fetchall()
            product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
赵杰's avatar
赵杰 committed
94

李宗熹's avatar
李宗熹 committed
95 96
            user_customer_order_df = order_df.set_index('fund_id').join(product_df.set_index('fund_id')).reset_index()
            self.start_date = user_customer_order_df["confirm_share_date"].min()
赵杰's avatar
赵杰 committed
97
            self.customer_real_name = user_customer_order_df["customer_name"].values[0]
赵杰's avatar
赵杰 committed
98
            self.ifa_real_name = user_customer_order_df["username"].values[0]
赵杰's avatar
赵杰 committed
99
            user_customer_order_df = user_customer_order_df[user_customer_order_df["confirm_share_date"] <= self.end_date]
赵杰's avatar
赵杰 committed
100
            user_customer_order_df.index = pd.Series(range(len(user_customer_order_df)))
李宗熹's avatar
李宗熹 committed
101
            return user_customer_order_df
赵杰's avatar
赵杰 committed
102 103 104

    # 获取客户持有的基金净值数据
    def get_customer_fund_nav_data(self):
李宗熹's avatar
李宗熹 committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            now_date = datetime.datetime.now().strftime("%Y%m%d")
            trade_date_df = self.get_trade_cal("20000101", now_date)
            self.trade_cal_date = trade_date_df
            all_fund_nav = pd.DataFrame(index=trade_date_df["datetime"])
            all_fund_cnav = pd.DataFrame(index=trade_date_df["datetime"])

            for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
                # 对应基金净值
                sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_nav_df = pd.DataFrame(list(data), columns=['price_date', 'nav', 'cnav'])

                # # 对应基金分红
                sql = """select distinct `distribute_date`, `distribution` from `fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_distribution_df = pd.DataFrame(list(data), columns=['price_date', 'distribution'])
                self.all_fund_distribution[cur_fund_id] = cur_fund_distribution_df

                # 对应基金performance数据
                sql = """select distinct `price_date`, `ret_1w`, `ret_cum_1m`, `ret_cum_6m`, `ret_cum_1y`, `ret_cum_ytd`, `ret_cum_incep` from `fund_performance` where `fund_id`='{}' order by `price_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_performance_df = pd.DataFrame(list(data),
                columns=['price_date', 'ret_1w', 'ret_cum_1m', 'ret_cum_6m', 'ret_cum_1y', 'ret_cum_ytd', 'ret_cum_incep'])
                self.all_fund_performance[cur_fund_id] = cur_fund_performance_df

                cur_fund_nav_df["price_date"] = pd.to_datetime(cur_fund_nav_df["price_date"])
138
                cur_fund_nav_df.drop_duplicates(subset="price_date", keep='first', inplace=True)
李宗熹's avatar
李宗熹 committed
139
                cur_fund_nav_df.set_index("price_date", inplace=True)
140
                cur_fund_nav_df = cur_fund_nav_df[cur_fund_nav_df.index.isin(all_fund_nav.index)]
李宗熹's avatar
李宗熹 committed
141 142 143 144 145
                all_fund_nav[cur_fund_id] = cur_fund_nav_df["nav"]
                all_fund_cnav[cur_fund_id] = cur_fund_nav_df["cnav"]

            all_fund_nav = all_fund_nav[all_fund_nav.index <= self.end_date]
            all_fund_cnav = all_fund_cnav[all_fund_cnav.index <= self.end_date]
赵杰's avatar
赵杰 committed
146 147 148
            # for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
            #     all_fund_nav[cur_fund_id][all_fund_nav[cur_fund_id].apply(lambda x: math.isnan(x))]=np.nan
            #     all_fund_cnav[cur_fund_id][all_fund_cnav[cur_fund_id].apply(lambda x: math.isnan(x))] = np.nan
149
            self.last_nav_date = str(all_fund_cnav.dropna(how="all").index.values[-1])[:10]
李宗熹's avatar
李宗熹 committed
150
            return all_fund_nav, all_fund_cnav
151

李宗熹's avatar
李宗熹 committed
152 153 154 155 156
    # 获取客户对比指数净值数据
    def get_customer_index_nav_data(self, index_id="IN0000007M"):
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            sql = "select distinct price_date,close from fund_market_indexes where index_id='{}'  order by price_date ASC".format(index_id)
157 158
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
李宗熹's avatar
李宗熹 committed
159 160 161 162 163
            index_df = pd.DataFrame(list(data), columns=['price_date', 'index'])
            index_df["price_date"] = pd.to_datetime(index_df["price_date"])
            index_df.set_index("price_date", inplace=True)
            self.fund_cnav_total["index"] = index_df["index"]
            self.index_df = index_df
164

李宗熹's avatar
李宗熹 committed
165
            return index_df
赵杰's avatar
赵杰 committed
166 167 168 169 170 171 172

    # 分组合计算
    def group_operate(self):
        for folio in self.user_customer_order_df["folio_name"].unique():
            cur_folio_order_df = self.user_customer_order_df[self.user_customer_order_df["folio_name"] == folio]
            fund_id_list = list(self.user_customer_order_df["fund_id"].unique())
            cur_folio_nav_df = self.fund_nav_total[fund_id_list]
173 174 175
            # fund_id_list.append("index")
            cur_folio_cnav_df = self.fund_cnav_total[fund_id_list]
            self.signal_folio_operate(folio, cur_folio_order_df, cur_folio_nav_df, cur_folio_cnav_df)
赵杰's avatar
赵杰 committed
176
            continue
赵杰's avatar
赵杰 committed
177

赵杰's avatar
赵杰 committed
178
    # 单个组合数据操作
179
    def signal_folio_operate(self, p_folio, p_order_df, p_nav_df, p_cnav_df):
赵杰's avatar
赵杰 committed
180 181
        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())

182 183 184 185 186 187 188 189 190 191 192 193 194
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
赵杰's avatar
赵杰 committed
195
            if pd.isnull(p_nav_df.loc[confirm_share_date, cur_fund_id]):
196 197 198 199 200 201 202 203
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
赵杰's avatar
赵杰 committed
204
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
205 206
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
207 208 209
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
赵杰's avatar
赵杰 committed
210
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
赵杰's avatar
赵杰 committed
211
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
212
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
213 214

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
赵杰's avatar
赵杰 committed
215 216 217 218
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            # # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            # if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
            #     last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     # 判断上个净值日和当前确认日之中是否存在分红日
            #     """need add judge"""
            #
            #     if len(last_nav_data) < 1:
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
            #     else:
            #         diff_nav = row["nav"] - last_nav_data.values[0]
            #         cur_cnav = last_cnav_data.values[0] + diff_nav
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

            if cur_fund_id+"_amount" not in cnav_df:
234 235
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
236
                cnav_df[cur_fund_id + "_profit"] = profit
237 238 239 240
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
241 242 243
                cnav_df[cur_fund_id+"_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0
赵杰's avatar
赵杰 committed
244 245 246

            # buy
            if row['order_type'] == 1:
247 248
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
赵杰's avatar
赵杰 committed
249 250
            # sell
            elif row['order_type'] == 2:
251 252
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]
赵杰's avatar
赵杰 committed
253

254 255 256 257 258 259 260 261
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_profit"] * cnav_df[cur_fund_id + "_share"]
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_earn"].apply(lambda x: float(x))
            # cnav_df[cur_fund_id + "_cum_earn"] = cnav_df[cur_fund_id + "_earn"].cumsum()

        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
262 263
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
264 265
            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
266 267
        self.group_data[p_folio] = {"result_cnav_data": cnav_df, "order_df": p_order_df}
        return cnav_df
赵杰's avatar
赵杰 committed
268

269
    # 所有的数据操作
270
    def total_combine_data(self):
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

        p_order_df = self.user_customer_order_df.copy()
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
赵杰's avatar
赵杰 committed
290
            if pd.isnull(p_nav_df.loc[confirm_share_date, cur_fund_id]):
291 292 293 294 295 296 297 298
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
赵杰's avatar
赵杰 committed
299
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
300 301
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
302 303 304
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
赵杰's avatar
赵杰 committed
305
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
赵杰's avatar
赵杰 committed
306
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
307
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
308 309 310 311 312 313

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in cnav_df:
314 315
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
316
                cnav_df[cur_fund_id + "_profit"] = profit
317 318 319 320
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
321 322 323 324
                cnav_df[cur_fund_id + "_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

325 326 327 328 329 330 331
                # profit = cnav_df[cur_fund_id].dropna() - cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit"] = profit
                # cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_profit_ratio"] = profit / cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_amount"] = 0
                # cnav_df[cur_fund_id + "_earn"] = 0
李宗熹's avatar
李宗熹 committed
332
                # cnav_df[cur_fund_id + "_cum_earn"] = 0
333 334
                # cnav_df[cur_fund_id + "_share"] = 0

335 336 337 338 339 340 341 342 343
            # buy
            if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
            # sell
            elif row['order_type'] == 2:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]

344 345 346 347
        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
348
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
349 350 351

            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
352
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
赵杰's avatar
赵杰 committed
353

354
        return cnav_df