result_service.py 19.5 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/23 15:29
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : result_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
import datetime
12
from decimal import Decimal
赵杰's avatar
赵杰 committed
13
from app.service.data_service import UserCustomerDataAdaptor
14 15
from app.utils.week_evaluation import *

赵杰's avatar
赵杰 committed
16 17

class UserCustomerResultAdaptor(UserCustomerDataAdaptor):
18
    total_result_data = {}
19
    group_result_data = {}
20

赵杰's avatar
赵杰 committed
21
    def __init__(self, user_id, customer_id, end_date=str(datetime.date.today())):
22
        super().__init__(user_id, customer_id, end_date)
赵杰's avatar
赵杰 committed
23

24
    # 组合结果数据
赵杰's avatar
赵杰 committed
25
    def calculate_group_result_data(self):
26 27

        for folio in self.group_data.keys():
28 29
            folio_report_data = {}

30 31
            cur_folio_result_cnav_data = self.group_data[folio]["result_cnav_data"]
            cur_folio_order_data = self.group_data[folio]["order_df"]
32
            freq_max = cur_folio_order_data["freq"].max()
赵杰's avatar
赵杰 committed
33
            first_trade_date = cur_folio_order_data["confirm_share_date"].min()
34 35 36

            fund_id_list = list(cur_folio_order_data["fund_id"].unique())
            fund_id_list_earn = [i + "_earn" for i in fund_id_list]
37
            # fund_id_list_amount = [i + "_amount" for i in fund_id_list]
38 39
            profit_df = cur_folio_result_cnav_data[fund_id_list_earn]

40 41
            # 组合收益率数组
            return_ratio_df = self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
赵杰's avatar
赵杰 committed
42
            resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
43 44 45 46

            # 总成本
            total_cost = float(cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_amount"].sum() - \
                         cur_folio_order_data[cur_folio_order_data["order_type"] == 2]["confirm_amount"].sum())
赵杰's avatar
赵杰 committed
47
            folio_report_data["total_cost"] = total_cost
48

49 50
            # 累积盈利
            cumulative_profit = profit_df.sum().sum()
51 52
            folio_report_data["cumulative_profit"] = float(cumulative_profit)

赵杰's avatar
赵杰 committed
53
            # 区间年化收益率
54 55 56 57 58 59 60 61 62 63
            n_freq = freq_days(int(freq_max))
            return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1]-1), resample_df, n_freq)
            folio_report_data["return_ratio_year"] = float(return_ratio_year)

            # 波动率
            volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
            folio_report_data["volatility"] = float(volatility_)

            # 最大回撤
            drawdown = max_drawdown(resample_df["cum_return_ratio"])
64
            folio_report_data["max_drawdown"] = drawdown
65 66 67 68 69 70 71

            # 夏普比率
            sim = simple_return(resample_df["cum_return_ratio"])
            exc = excess_return(sim, BANK_RATE, n_freq)
            sharpe = sharpe_ratio(exc, sim, n_freq)
            folio_report_data["sharpe"] = float(sharpe)

72 73
            # 期末资产
            ending_assets = cumulative_profit + total_cost
74
            folio_report_data["ending_assets"] = float(ending_assets)
75 76 77 78

            # 本月收益
            cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date+datetime.timedelta(days=1), fund_id_list_earn]
            cur_month_profit = cur_month_profit_df.sum().sum()
79 80
            folio_report_data["cur_month_profit"] = float(cur_month_profit)

81
            # 本月累积收益率
82 83 84 85 86 87 88
            last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
            cur_profit_ratio = return_ratio_df.loc[self.month_start_date:, "cum_return_ratio"].values
            if len(last_profit_ratio) <= 0:
                cur_month_profit_ratio = cur_profit_ratio[-1] - 1
            else:
                cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
            folio_report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)
89 90 91 92 93

            # 今年累积收益
            cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
            cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
            cur_year_profit = cur_year_profit_df.sum().sum()
94 95
            folio_report_data["cur_year_profit"] = float(cur_year_profit)

96
            # 今年累积收益率
97 98 99 100 101 102 103
            last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
            cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
            if len(last_profit_ratio) <= 0:
                cur_year_profit_ratio = cur_profit_ratio[-1] - 1
            else:
                cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
            folio_report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)
104

赵杰's avatar
赵杰 committed
105 106 107
            # 累积收益率
            cumulative_return= return_ratio_df["cum_return_ratio"].values[-1]
            folio_report_data["contribution_decomposition"] = float(cumulative_return)
108 109

            # 组合内单个基金净值数据  组合内基金持仓数据
赵杰's avatar
赵杰 committed
110
            result_fund_nav_info, result_fund_hoding_info = self.group_fund_basic_info_data(cur_folio_order_data, cur_folio_result_cnav_data, cumulative_profit, total_cost)
111 112 113 114 115

            # 拼接组合以及综合结果数据
            folio_report_data["group_nav_info"] = result_fund_nav_info
            folio_report_data["group_hoding_info"] = result_fund_hoding_info

116 117 118 119 120 121
            # 对应指数数据
            index_df = self.get_customer_index_nav_data()
            index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)],
                                                          "index")
            folio_report_data["index_result"] = index_result

122 123 124 125 126
            self.group_result_data[folio] = folio_report_data

        return self.group_result_data

    # 综述数据
赵杰's avatar
赵杰 committed
127
    def calculate_total_data(self):
128 129 130 131 132 133 134 135 136 137 138 139
        report_data = {}

        cur_folio_result_cnav_data = self.total_customer_order_cnav_df
        cur_folio_order_data = self.user_customer_order_df
        freq_max = cur_folio_order_data["freq"].max()
        #
        fund_id_list = list(cur_folio_order_data["fund_id"].unique())
        fund_id_list_earn = [i + "_earn" for i in fund_id_list]
        profit_df = cur_folio_result_cnav_data[fund_id_list_earn]

        # 持仓周期
        first_trade_date = cur_folio_order_data["confirm_share_date"].min()
赵杰's avatar
赵杰 committed
140
        hold_days = (self.end_date - pd.to_datetime(first_trade_date)).days
141 142 143 144
        report_data["hold_days"] = hold_days

        # 组合收益率数组
        return_ratio_df = self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
赵杰's avatar
赵杰 committed
145
        resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        # 总成本
        total_cost = float(cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_amount"].sum() - \
                           cur_folio_order_data[cur_folio_order_data["order_type"] == 2]["confirm_amount"].sum())
        report_data["total_cost"] = total_cost
        #
        # # 累积盈利
        # cumulative_profit = profit_df.sum().sum()
        # report_data["cumulative_profit"] = float(cumulative_profit)
        #
        # # 区间年化收益
        # n_freq = freq_days(int(freq_max))
        # return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1] - 1), resample_df, n_freq)
        # report_data["return_ratio_year"] = float(return_ratio_year)
        #
        # # 波动率
        # volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
        # report_data["volatility"] = float(volatility_)

        # 最大回撤
        drawdown = max_drawdown(resample_df["cum_return_ratio"])
        report_data["max_drawdown"] = drawdown
        #
        # # 夏普比率
        # sim = simple_return(resample_df["cum_return_ratio"])
        # exc = excess_return(sim, BANK_RATE, n_freq)
        # sharpe = sharpe_ratio(exc, sim, n_freq)
        # report_data["sharpe"] = float(sharpe)
        #
        # # 期末资产
        # ending_assets = cumulative_profit + total_cost
        # report_data["ending_assets"] = float(ending_assets)
        #
        # # 本月收益
        # cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date + datetime.timedelta(days=1),
        #                       fund_id_list_earn]
        # cur_month_profit = cur_month_profit_df.sum().sum()
        # report_data["cur_month_profit"] = float(cur_month_profit)
        #
        # # 本月累积收益率
        # last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
        # cur_profit_ratio = return_ratio_df.loc[self.month_start_date:, "cum_return_ratio"].values
        # if len(last_profit_ratio) <= 0:
        #     cur_month_profit_ratio = cur_profit_ratio[-1] - 1
        # else:
        #     cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
        # report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)
        #
        # # 今年累积收益
        # cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
        # cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
        # cur_year_profit = cur_year_profit_df.sum().sum()
        # report_data["cur_year_profit"] = float(cur_year_profit)
        #
        # # 今年累积收益率
        # last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
        # cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
        # if len(last_profit_ratio) <= 0:
        #     cur_year_profit_ratio = cur_profit_ratio[-1] - 1
        # else:
        #     cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
        # report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)

        # 月度回报
        def year_month(x):
            a = x.year
            b = x.month
            return str(a) + "/" + str(b)

        profit_df_cp = profit_df.copy()
        profit_df_cp["date"] = profit_df_cp.index
        grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
        sum_group = grouped.agg(np.sum)
        month_sum = sum_group.sum(axis=1)
赵杰's avatar
赵杰 committed
220 221 222 223 224 225 226 227 228

        return_ratio_df["date"] = return_ratio_df.index
        return_group = return_ratio_df.groupby(return_ratio_df["date"].apply(year_month))
        month_last_return_ratio = return_group.last()["cum_return_ratio"]
        month_result = pd.DataFrame({"date": month_sum.index, "profit": month_sum.values, "ratio": month_last_return_ratio.values})
        month_result["datetime"] = pd.to_datetime(month_result["date"])
        month_result.sort_values(by="datetime", inplace=True)
        report_data["month_return"] = month_result

229 230 231 232 233 234 235 236 237

        # # 贡献分解
        # month_earn = sum_group.div(month_sum, axis='rows')
        # report_data["contribution_decomposition"] = month_earn

        # 累积收益率
        cumulative_return = return_ratio_df["cum_return_ratio"].values[-1]
        report_data["contribution_decomposition"] = float(cumulative_return)

238 239 240 241 242
        # 对应指数数据
        index_df = self.get_customer_index_nav_data()
        index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)], "index")
        report_data["index_result"] = index_result

243 244
        self.total_result_data = report_data
        return report_data
245

赵杰's avatar
赵杰 committed
246
    # 基金净值数据,持仓数据
247
    def group_fund_basic_info_data(self, p_order_df, p_result_cnav_data, p_sum_profit, p_total_amount):
248 249 250 251 252 253 254
        group_fund_basic_info = []
        group_fund_hoding_info = []
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            cur_fund_performance = self.all_fund_performance[cur_fund_id]
            cur_fund_info_series = cur_fund_performance.iloc[-1]
            # 基金净值数据
赵杰's avatar
赵杰 committed
255 256 257 258 259 260 261 262 263
            fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"],4)}
            fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
            fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
            fund_basic_info["ret_1w"] = round(cur_fund_info_series["ret_1w"]*100, 2) if cur_fund_info_series["ret_1w"] is not None else "-"    # 上周
            fund_basic_info["ret_cum_1m"] = round(cur_fund_info_series["ret_cum_1m"]*100, 2) if cur_fund_info_series["ret_cum_1m"] is not None else "-"  # 最近一个月
            fund_basic_info["ret_cum_6m"] = round(cur_fund_info_series["ret_cum_6m"]*100, 2) if cur_fund_info_series["ret_cum_6m"] is not None else "-"  # 最近半年
            fund_basic_info["ret_cum_1y"] = round(cur_fund_info_series["ret_cum_1y"]*100, 2) if cur_fund_info_series["ret_cum_1y"] is not None else "-"  # 最近一年
            fund_basic_info["ret_cum_ytd"] = round(cur_fund_info_series["ret_cum_ytd"]*100, 2) if cur_fund_info_series["ret_cum_ytd"] is not None else "-"    # 今年以来
            fund_basic_info["ret_cum_incep"] = round(cur_fund_info_series["ret_cum_incep"]*100, 2) if cur_fund_info_series["ret_cum_incep"] is not None else "-"    # 成立以来
264 265 266
            # 申购以来
            confirm_date = pd.to_datetime(row["confirm_share_date"])
            confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
赵杰's avatar
赵杰 committed
267
            fund_basic_info["ret_after_confirm"] = round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)
268 269 270 271 272 273
            # 分红
            distribution_df = self.all_fund_distribution[cur_fund_id]
            if distribution_df.empty:
                fund_basic_info["distribution"] = "-"
            else:
                distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
赵杰's avatar
赵杰 committed
274 275
                distribution = float(distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
                fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"
赵杰's avatar
赵杰 committed
276

277
            group_fund_basic_info.append(fund_basic_info)
赵杰's avatar
赵杰 committed
278

279 280 281
            # 基金持仓数据
            fund_hoding_info = {"fund_strategy_name": dict_substrategy[int(row["substrategy"])], "fund_name": row["fund_name"]}
            fund_hoding_info["confirm_date"] = row["confirm_share_date"]
赵杰's avatar
赵杰 committed
282
            fund_hoding_info["weight"] = round(float(row["confirm_amount"]) / p_total_amount * 100, 2)
赵杰's avatar
赵杰 committed
283
            fund_hoding_info["market_values"] = round((float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"]))/10000, 2)
赵杰's avatar
赵杰 committed
284 285
            fund_hoding_info["cost"] = round(float(row["confirm_amount"])/10000, 2)
            fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav)/10000, 2)
286 287
            # fund_hoding_info["ykb"] = fund_hoding_info["profit"] / fund_hoding_info["cost"]
            try:
赵杰's avatar
赵杰 committed
288
                fund_hoding_info["ykb"] = round(float(gain_loss_ratio(p_result_cnav_data[cur_fund_id + "_profit"].dropna()))*100, 2)
289
            except:
赵杰's avatar
赵杰 committed
290 291
                fund_hoding_info["ykb"] = "-"
            fund_hoding_info["profit_contribution"] = round(fund_hoding_info["profit"]*10000 / p_sum_profit*100, 2)
292 293
            group_fund_hoding_info.append(fund_hoding_info)
        return group_fund_basic_info, group_fund_hoding_info
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    @staticmethod
    def combination_yield(p_combina_df, fund_id_list):
        fund_id_list_amount = [i + "_amount" for i in fund_id_list]
        fund_id_list_profit_ratio = [i + "_profit_ratio" for i in fund_id_list]
        nav_amount_df = p_combina_df[fund_id_list + fund_id_list_amount+fund_id_list_profit_ratio].copy()

        nav_amount_df["sum_amount"] = nav_amount_df[fund_id_list_amount].sum(axis=1).apply(lambda x: Decimal.from_float(x))
        for amount_name in fund_id_list:
            nav_amount_df[amount_name+"_amount_ratio"] = nav_amount_df[amount_name+"_amount"]/nav_amount_df["sum_amount"]
            nav_amount_df[amount_name+"_profit_ratio_weight"] = nav_amount_df[amount_name+"_amount_ratio"] * nav_amount_df[amount_name+"_profit_ratio"]

        fund_id_list_profit_ratio_weight = [i + "_profit_ratio_weight" for i in fund_id_list]
        nav_profit_ratio_weight = nav_amount_df[fund_id_list_profit_ratio_weight].copy().fillna(method='ffill')

        # 收益率
        return_ratio = nav_profit_ratio_weight.sum(axis=1)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

        # 累积收益率
        return_ratio_list = list(return_ratio.values)
        cum_return_ratio = []
        last_ratio = 0
        for i in range(len(return_ratio_list)):
            if i == 0:
                last_ratio = 1 + return_ratio_list[i]
                cum_return_ratio.append(last_ratio)
                continue

            cur_ratio = (1 + return_ratio_list[i]) * last_ratio
            cum_return_ratio.append(cur_ratio)
            last_ratio = cur_ratio

        # 收益率
        cum_return_ratio_df = pd.DataFrame(return_ratio.values, columns=["return_ratio"])
        cum_return_ratio_df["cum_return_ratio"] = cum_return_ratio
        cum_return_ratio_df.index = return_ratio.index
        return cum_return_ratio_df
331

332
    @staticmethod
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    def signal_fund_profit_result(p_fund_nav_df, cur_fund_id):
        result = {"fund_id": cur_fund_id}
        fund_nav_df = p_fund_nav_df.copy()
        profit = fund_nav_df[cur_fund_id].dropna() - fund_nav_df[cur_fund_id].dropna().shift(1)
        fund_nav_df[cur_fund_id + "_profit"] = profit
        fund_nav_df[cur_fund_id + "_profit_ratio"] = profit / fund_nav_df[cur_fund_id].dropna().shift(1)

        # 累积收益率
        return_ratio_list = list(fund_nav_df[cur_fund_id + "_profit_ratio"].astype("float64").values)
        cum_return_ratio = []
        last_ratio = 0
        for i in range(len(return_ratio_list)):
            if i == 0:
                last_ratio = 1 + return_ratio_list[i] if str(return_ratio_list[0]) != 'nan' else 1
                cum_return_ratio.append(last_ratio)
                continue

            cur_ratio = (1 + return_ratio_list[i]) * last_ratio
            cum_return_ratio.append(cur_ratio)
            last_ratio = cur_ratio

        fund_nav_df['cum_return_ratio'] = cum_return_ratio

        # 区间收益率
        result["return_ratio"] = cum_return_ratio[-1]

        # 区间年化收益
        n_freq = freq_days(1)
        return_ratio_year = annual_return((fund_nav_df["cum_return_ratio"].values[-1] - 1), fund_nav_df, n_freq)
        result["return_ratio_year"] = float(return_ratio_year)

        # 波动率
        volatility_ = volatility(fund_nav_df["cum_return_ratio"], n_freq)
        result["volatility"] = float(volatility_)

        # 最大回撤
        drawdown = max_drawdown(fund_nav_df["cum_return_ratio"])
        result["max_drawdown"] = drawdown

        # 夏普比率
        sim = simple_return(fund_nav_df["cum_return_ratio"])
        exc = excess_return(sim, BANK_RATE, n_freq)
        sharpe = sharpe_ratio(exc, sim, n_freq)
        result["sharpe"] = float(sharpe)

        return result
379

赵杰's avatar
赵杰 committed
380 381 382 383 384 385 386 387 388 389 390 391 392
    def get_month_return_chart(self):
        res = self.total_result_data["month_return"]
        xlabels = res["date"].values
        res["profit"] = res["profit"].apply(lambda x: round(x/100.0, 2))
        res["ratio"] = res["ratio"].apply(lambda x: round((x-1)*100, 2))
        product_list = {'name': '月度回报', 'data': res["profit"].values}
        cumulative = {'name': '累积收益', 'data': res["ratio"].values}

        return xlabels, [product_list], cumulative

    def get_total_basic_data(self):
        return self.total_result_data

393 394
    def get_group_data(self):
        return self.group_result_data