portfolio_diagnose.py 61.8 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6
# -*- coding: UTF-8 -*-
"""
@author: Zongxi.Li
@file:portfolio_diagnose.py
@time:2020/12/07
"""
李宗熹's avatar
李宗熹 committed
7 8 9 10
import warnings

warnings.filterwarnings("ignore")

李宗熹's avatar
李宗熹 committed
11 12 13 14 15
from app.utils.fund_rank import *
from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier
李宗熹's avatar
李宗熹 committed
16
from app.api.engine import tamp_product_engine, tamp_fund_engine, TAMP_SQL
李宗熹's avatar
李宗熹 committed
17 18 19 20 21 22 23 24 25 26 27


def cal_correlation(prod):
    """计算组合内基金相关性

    Args:
        prod: 组合净值表:索引为日期,列名为基金ID, 内容为净值

    Returns:屏蔽基金与自身相关性的相关矩阵,因为基金与自身相关性为1,妨碍后续高相关性基金筛选的判断

    """
李宗熹's avatar
李宗熹 committed
28
    prod_return = prod.iloc[:, :].apply(lambda x: simple_return(x).astype(float))
李宗熹's avatar
李宗熹 committed
29
    correlation = prod_return.corr()
李宗熹's avatar
李宗熹 committed
30
    correlation = correlation.round(2)
李宗熹's avatar
李宗熹 committed
31
    return correlation.mask(np.eye(correlation.shape[0], dtype=np.bool_))
李宗熹's avatar
李宗熹 committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


def rename_col(df, fund_id):
    """将列名由adj_nav改为基金ID

    Args:
        df: 原始净值表:索引为日期,列名分别为 ”fund_id“, "adj_nav", 内容为[基金ID,净值]
        fund_id: 基金ID

    Returns:删除 ”fund_id” 列, 重命名 “adj_nav” 列为基金ID的净值表

    """
    df.rename(columns={'adj_nav': fund_id}, inplace=True)
    df.drop('fund_id', axis=1, inplace=True)
    return df


def replace_fund(manager, substrategy, fund_rank):
    """查找不足半年数据的基金的替代基金

    Args:
        manager: 基金经理ID
        substrategy: 基金二级策略
        fund_rank:  基金打分排名表

    Returns: 满足相同基金经理ID下的同种二级策略的基金ID的第一个结果

    """
    df = fund_rank[(fund_rank['manager'] == manager) &
                   (fund_rank['substrategy'] == substrategy)]
    return df['fund_id'].values[0]


def search_rank(fund_rank, fund, metric):
    """查找基金在基金排名表中的指标

    Args:
        fund_rank: 基金排名表
        fund: 输入基金ID
        metric: 查找的指标名称

    Returns: 基金指标的值

    """
赵杰's avatar
赵杰 committed
76 77 78 79 80 81 82
    if len(fund_rank[fund_rank['fund_id'] == fund]) == 0:
        now_fund = {'index': np.nan, 'fund_id': fund, 'range_return': 0.5, 'annual_return': 0.5,
                    'max_drawdown': 0.5, 'sharp_ratio': 1, 'volatility': 0.4, 'sortino_ratio': 0,
                    'downside_risk': 0, 'substrategy': 1010, 'manager': ['PL000000F5'], 'annual_return_rank': 0.5,
                    'downside_risk_rank': 0.5, 'max_drawdown_rank': 0.5, 'sharp_ratio_rank': 0.5, 'z_score': 50}
        fund_rank = fund_rank.append(now_fund, ignore_index=True)

李宗熹's avatar
李宗熹 committed
83 84 85
    return fund_rank[fund_rank['fund_id'] == fund][metric].values[0]


李宗熹's avatar
李宗熹 committed
86
def translate_single(content, content_id, evaluation):
李宗熹's avatar
李宗熹 committed
87 88 89 90 91 92 93
    '''
    content = [["优秀","良好","一般"],
           ["优秀","良好","合格","较差"],
           ["优秀","良好","合格","较差"],
           ["高","一般","较低"]]
    evaluation = [0,1,1,2]
    '''
李宗熹's avatar
李宗熹 committed
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    ret = []
    for i, v in enumerate(evaluation):
        if isinstance(v, str):
            ret.append(v)
            continue
        elif content[content_id][i][v] in ["优秀", "良好", "高", "高于", "较好"]:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        elif content_id == 4 and v == 0:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        else:
            ret.append("""<span class="self_description_green">{}</span>""".format(content[content_id][i][v]))
    return tuple(ret)
李宗熹's avatar
李宗熹 committed
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122


def choose_good_evaluation(evaluation):
    """抽取好的评价

    Args:
        evaluation: 个基的评价

    Returns: 个基好的评价

    """
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]
李宗熹's avatar
李宗熹 committed
123
    v5 = evaluation.get(5)
李宗熹's avatar
李宗熹 committed
124 125 126

    if v1[0] > 1:
        del evaluation[1]
赵杰's avatar
赵杰 committed
127
    if (v2[0] > 1 and float(v2[1].strip('%')) <= 60) or math.isnan(float(v2[1].strip('%'))):
李宗熹's avatar
李宗熹 committed
128 129 130 131 132
        del evaluation[2]
    if v3[0] > 1:
        del evaluation[3]
    if v4[0] != 0 or v4[1] != 0:
        del evaluation[4]
李宗熹's avatar
李宗熹 committed
133 134
    # if v5[0] < 3 or v5[2] > 1:  # 基金经理的基金管理年限小于三年或平均业绩处于中下水平
    if v5:
李宗熹's avatar
李宗熹 committed
135 136 137 138 139 140 141 142 143 144 145 146 147
        del evaluation[5]

    return evaluation


def choose_bad_evaluation(evaluation):
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]

    if v1[0] < 2:
        del evaluation[1]
赵杰's avatar
赵杰 committed
148
    if v2[0] < 2 or math.isnan(float(v2[1].strip('%'))):
李宗熹's avatar
李宗熹 committed
149 150 151 152 153 154 155 156 157 158
        del evaluation[2]
    if v3[0] < 2:
        del evaluation[3]
    if v4[0] != 1 or v4[1] != 1:
        del evaluation[4]

    return evaluation


def get_fund_rank():
李宗熹's avatar
李宗熹 committed
159 160 161 162 163 164
    """获取基金指标排名

    :return: 基金指标排名表
    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
李宗熹's avatar
李宗熹 committed
165
        sql = "SELECT * FROM new_fund_rank"
李宗熹's avatar
李宗熹 committed
166 167 168

        # df = pd.read_sql(sql, con)
        # df = pd.read_csv('fund_rank.csv', encoding='gbk')
李宗熹's avatar
李宗熹 committed
169
        cur = tamp_fund_session.execute(sql)
李宗熹's avatar
李宗熹 committed
170 171 172 173 174 175 176
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['index', 'fund_id', 'range_return', 'annual_return', 'max_drawdown',
                                               'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                               'substrategy', 'manager', 'annual_return_rank', 'downside_risk_rank',
                                               'max_drawdown_rank', 'sharp_ratio_rank', 'z_score'])
        df.drop('index', axis=1, inplace=True)
        return df
李宗熹's avatar
李宗熹 committed
177 178


李宗熹's avatar
李宗熹 committed
179 180
def get_index_daily(index_id, start_date):
    """获取指数日更数据
李宗熹's avatar
李宗熹 committed
181 182 183

    Args:
        index_id: 指数ID
李宗熹's avatar
李宗熹 committed
184
        start_date: 数据开始时间
李宗熹's avatar
李宗熹 committed
185 186 187 188

    Returns:与组合净值形式相同的表

    """
李宗熹's avatar
李宗熹 committed
189 190
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
191 192
        sql = "SELECT ts_code, trade_date, close FROM index_daily " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
李宗熹's avatar
李宗熹 committed
193 194 195 196
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()

197 198
        df = pd.DataFrame(list(data), columns=['ts_code', 'trade_date', ' close'])
        df.rename({'ts_code': 'fund_id', 'trade_date': 'end_date', 'close': 'adj_nav'}, axis=1, inplace=True)
199 200 201 202 203 204 205
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
    return df


李宗熹's avatar
李宗熹 committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
def get_index_monthly(index_id, start_date):
    """获取指数月度数据

    Args:
        index_id: 指数ID
        start_date: 数据开始时间

    Returns:与组合净值形式相同的表

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT ts_code, trade_date, pct_chg FROM index_monthly " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()

        df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'pct_chg'])
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
        return df


def get_tamp_fund():
    """获取探普产品池净值表

    Returns:

    """
赵杰's avatar
赵杰 committed
238 239 240 241
    with TAMP_SQL(tamp_product_engine) as tamp_prod:
        tamp_prod_session = tamp_prod.session
        sql = "SELECT id FROM fund_info WHERE `status` = 1 and strategy!=7"
        cur = tamp_prod_session.execute(sql)
李宗熹's avatar
李宗熹 committed
242 243 244 245 246 247 248
        data = cur.fetchall()
        # df = pd.read_sql(sql, con)
        df = pd.DataFrame(list(data), columns=['fund_id'])
        # df.rename({'id': 'fund_id'}, axis=1, inplace=True)
    return df


249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
def get_tamp_nav(fund, start_date, rollback=False, invest_type='public'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
    with TAMP_SQL(tamp_product_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == "private":
            sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
                  "WHERE fund_id='{}'".format(fund)
            # df = pd.read_sql(sql, con).dropna(how='any')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
            df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)

        # if df2['adj_nav'].count() == 0:
        #     logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
        #     return None

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
李宗熹's avatar
李宗熹 committed
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    return df


def get_risk_level(substrategy):
    """获取风险类型

    Args:
        substrategy: 二级策略

    Returns:

    """
    substrategy2risk = {1: "H",
                        1010: "H", 1020: "H", 1030: "H",
                        2010: "H",
                        3010: "H", 3020: "L", 3030: "H", 3040: "L", 3050: "M",
                        4010: "M", 4020: "M", 4030: "M", 4040: "M",
                        5010: "M", 5020: "L", 5030: "M",
                        6010: "L", 6020: "M", 6030: "L",
                        7010: "H", 7020: "H",
                        8010: "H", 8020: "M"}
    return substrategy2risk[substrategy]


李宗熹's avatar
李宗熹 committed
310 311 312 313 314 315 316 317
def get_radar_data(fund):
    df = fund_rank[fund_rank['fund_id'] == fund]
    return_score = df['annual_return_rank'].values[0] * 100
    downside_score = df['downside_risk_rank'].values[0] * 100
    drawdown_score = df['max_drawdown_rank'].values[0] * 100
    sharpe_score = df['sharp_ratio_rank'].values[0] * 100
    total_score = df['z_score'].values[0]
    fund_name = get_fund_name(fund).values[0][0]
李宗熹's avatar
李宗熹 committed
318

李宗熹's avatar
李宗熹 committed
319 320 321 322 323 324 325 326 327
    return {'name': fund_name, 'data': [{'name': '绝对收益', 'data': '%.2f' % return_score},
                                        {'name': '抗风险能力', 'data': '%.2f' % downside_score},
                                        {'name': '极端风险', 'data': '%.2f' % drawdown_score},
                                        {'name': '风险调整后收益', 'data': '%.2f' % sharpe_score},
                                        {'name': '业绩持续性', 'data': '%.2f' % np.random.randint(70, 90)},
                                        {'name': '综合评分', 'data': '%.2f' % total_score}]}


def get_fund_name(fund):
李宗熹's avatar
李宗熹 committed
328 329
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
李宗熹's avatar
李宗熹 committed
330 331
        sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
        # df = pd.read_sql(sql, con)
李宗熹's avatar
李宗熹 committed
332
        cur = tamp_fund_session.execute(sql)
李宗熹's avatar
李宗熹 committed
333 334
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['fund_short_name'])
赵杰's avatar
赵杰 committed
335 336 337 338 339 340 341 342 343
        if len(df) == 0:
            with TAMP_SQL(tamp_product_engine) as tamp_product:
                tamp_product_session = tamp_product.session
                sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
                # df = pd.read_sql(sql, con)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                df = pd.DataFrame(list(data), columns=['fund_short_name'])
                return df
李宗熹's avatar
李宗熹 committed
344
        return df
李宗熹's avatar
李宗熹 committed
345 346 347


# 获取排名信息
李宗熹's avatar
李宗熹 committed
348
fund_rank = get_fund_rank()
李宗熹's avatar
李宗熹 committed
349
# 获取探普产品池
李宗熹's avatar
李宗熹 committed
350
tamp_fund = get_tamp_fund()
李宗熹's avatar
李宗熹 committed
351 352 353


class PortfolioDiagnose(object):
李宗熹's avatar
李宗熹 committed
354 355
    def __init__(self, client_type, portfolio, invest_amount, expect_return=0.1,
                 expect_drawdown=0.15, index_id='000905.SH', invest_type='private', start_date=None, end_date=None):
李宗熹's avatar
李宗熹 committed
356 357 358 359 360 361
        """基金诊断

        Args:
            client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
            portfolio: 投资组合:[基金1, 基金2, 基金3...]
            invest_amount: 投资金额:10000000元
李宗熹's avatar
李宗熹 committed
362 363 364
            expect_return: 期望收益
            expect_drawdown: 期望回撤
            index_id: 指数ID
李宗熹's avatar
李宗熹 committed
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
            invest_type: 投资类型:public, private, ...
            start_date: 诊断所需净值的开始日期
            end_date: 诊断所需净值的结束日期
        """

        self.freq_list = []
        self.client_type = client_type
        self.portfolio = portfolio
        self.expect_return = expect_return
        self.expect_drawdown = expect_drawdown
        self.index_id = index_id
        self.invest_amount = invest_amount
        self.invest_type = invest_type
        self.start_date = start_date
        self.end_date = end_date

        if self.end_date is None:
李宗熹's avatar
李宗熹 committed
382 383
            self.end_date = datetime.datetime(datetime.date.today().year,
                                              datetime.date.today().month, 1) - datetime.timedelta(1)
赵杰's avatar
赵杰 committed
384
        if self.start_date is None:
李宗熹's avatar
李宗熹 committed
385
            self.start_date = cal_date(self.end_date, 'Y', 1)
赵杰's avatar
赵杰 committed
386 387
        else:
            self.start_date = datetime.datetime(start_date.year, start_date.month, start_date.day)
李宗熹's avatar
李宗熹 committed
388 389 390
        self.replace_pair = dict()  # 由于数据不足半年而被替换为相同基金经理和策略的原基金和替换基金的映射
        self.no_data_fund = []  # 未在数据库中找到基金净值或者基金经理记录的基金
        self.abandon_fund_score = []  # 打分不满足要求的基金
李宗熹's avatar
李宗熹 committed
391
        self.abandon_fund_corr = []  # 相关性过高
李宗熹's avatar
李宗熹 committed
392 393 394 395 396
        self.proposal_fund = []  # 建议的基金
        self.old_correlation = None
        self.new_correlation = None
        self.old_weights = None
        self.new_weights = None
李宗熹's avatar
李宗熹 committed
397 398 399
        self.origin_portfolio = None
        self.abandoned_portfolio = None
        self.propose_portfolio = None
李宗熹's avatar
李宗熹 committed
400 401 402 403 404 405 406 407

    def get_portfolio(self, ):
        """获取组合净值表

        Returns:

        """
        # 获取原始投资组合的第一支基金的净值表
408
        prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
409 410
        fund_info = get_fund_info(self.end_date, invest_type=self.invest_type)

赵杰's avatar
赵杰 committed
411 412
        while prod is None or prod.index[-1] - prod.index[0] < 0.6 * (self.end_date - self.start_date):
        # while prod is None:
李宗熹's avatar
李宗熹 committed
413
            # 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
李宗熹's avatar
李宗熹 committed
414
            result = fund_info[fund_info['fund_id'] == self.portfolio[0]]
赵杰's avatar
赵杰 committed
415 416 417
            if result.empty:
                break

李宗熹's avatar
李宗熹 committed
418 419
            manager = str(result['manager'].values)
            strategy = result['substrategy'].values
李宗熹's avatar
李宗熹 committed
420

李宗熹's avatar
李宗熹 committed
421 422
            replaced_fund = replace_fund(manager, strategy, fund_rank)

李宗熹's avatar
李宗熹 committed
423
            if replaced_fund:
李宗熹's avatar
李宗熹 committed
424 425
                # 替换基金数据非空则记录替换的基金对
                prod = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
426
                self.replace_pair[self.portfolio[0]] = replaced_fund
李宗熹's avatar
李宗熹 committed
427 428
            else:
                # 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
李宗熹's avatar
李宗熹 committed
429
                self.no_data_fund.append(self.portfolio[0])
李宗熹's avatar
李宗熹 committed
430
                self.portfolio.pop(0)
431
                prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
432 433 434

        # 记录基金的公布频率
        self.freq_list.append(get_frequency(prod))
李宗熹's avatar
李宗熹 committed
435
        prod = rename_col(prod, self.portfolio[0])
李宗熹's avatar
李宗熹 committed
436 437

        # 循环拼接基金净值表构建组合
李宗熹's avatar
李宗熹 committed
438 439
        for idx in range(len(self.portfolio) - 1):
            prod1 = get_tamp_nav(self.portfolio[idx + 1], self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
440

李宗熹's avatar
李宗熹 committed
441 442
            # if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
            if prod1 is None:
李宗熹's avatar
李宗熹 committed
443
                result = fund_info[fund_info['fund_id'] == self.portfolio[idx + 1]]
李宗熹's avatar
李宗熹 committed
444 445 446 447 448 449

                if result['fund_manager_id'].count() != 0:
                    manager = str(result['fund_manager_id'].values)
                    substrategy = result['substrategy'].values[0]
                    replaced_fund = replace_fund(manager, substrategy, fund_rank)
                else:
李宗熹's avatar
李宗熹 committed
450
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
451 452
                    continue

李宗熹's avatar
李宗熹 committed
453
                if replaced_fund:
李宗熹's avatar
李宗熹 committed
454
                    prod1 = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
455
                    self.replace_pair[self.portfolio[idx + 1]] = replaced_fund
李宗熹's avatar
李宗熹 committed
456 457 458
                    self.freq_list.append(get_frequency(prod1))
                    prod1 = rename_col(prod1, replaced_fund)
                else:
李宗熹's avatar
李宗熹 committed
459
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
460 461 462
                    continue
            else:
                self.freq_list.append(get_frequency(prod1))
李宗熹's avatar
李宗熹 committed
463
                prod1 = rename_col(prod1, self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
464 465 466 467 468 469 470 471

            # 取prod表和prod1表的并集
            prod = pd.merge(prod, prod1, on=['end_date'], how='outer')

        # 对所有合并后的基金净值表按最大周期进行重采样
        prod.sort_index(inplace=True)
        prod.ffill(inplace=True)
        prod = resample(prod, get_trade_cal(), min(self.freq_list))
赵杰's avatar
赵杰 committed
472 473 474 475
        if 'cal_date' in prod.columns:
            prod.drop(labels='cal_date', inplace=True, axis=1)
        if 'end_date' in prod.columns:
            prod.drop(labels='end_date', inplace=True, axis=1)
李宗熹's avatar
李宗熹 committed
476
        prod.dropna(how='any', inplace=True)
李宗熹's avatar
李宗熹 committed
477 478 479 480 481 482 483 484 485 486 487 488
        return prod

    def abandon(self, prod):
        """建议替换的基金

        Args:
            prod: 原始组合净值表

        Returns: 剔除建议替换基金的组合净值表

        """
        self.old_correlation = cal_correlation(prod)
李宗熹's avatar
李宗熹 committed
489

李宗熹's avatar
李宗熹 committed
490 491 492 493 494
        for fund in prod.columns:
            z_score = search_rank(fund_rank, fund, metric='z_score')
            # 建议替换得分为60或与其他基金相关度大于0.8的基金
            if z_score < 60:
                self.abandon_fund_score.append(fund)
李宗熹's avatar
李宗熹 committed
495
                continue
李宗熹's avatar
李宗熹 committed
496

李宗熹's avatar
李宗熹 committed
497
            elif np.any(self.old_correlation[fund] > 0.8):
李宗熹's avatar
李宗熹 committed
498
                self.abandon_fund_corr.append(fund)
李宗熹's avatar
李宗熹 committed
499

李宗熹's avatar
李宗熹 committed
500
        prod = prod.drop(self.abandon_fund_score + self.abandon_fund_corr, axis=1)
李宗熹's avatar
李宗熹 committed
501 502 503
        self.old_correlation = self.old_correlation.fillna(1).round(2)
        self.old_correlation.columns = self.old_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.old_correlation.index = self.old_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
504 505 506 507 508 509 510 511 512 513 514 515
        return prod

    def proposal(self, prod):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
        # 组合内已包含的策略
李宗熹's avatar
李宗熹 committed
516
        # included_strategy = set()
李宗熹's avatar
李宗熹 committed
517
        # 按每种基金最少投资100w确定组合包含的最大基金数量
赵杰's avatar
赵杰 committed
518
        max_len = min(len(self.portfolio) - len(prod.columns),  self.invest_amount/1e6)
李宗熹's avatar
李宗熹 committed
519 520

        # 排名表内包含的所有策略
李宗熹's avatar
李宗熹 committed
521
        # all_strategy = set(fund_rank['substrategy'].to_list())
李宗熹's avatar
李宗熹 committed
522 523 524 525 526 527
        all_risk = {"H", "M", "L"}
        included_risk = {}
        if prod is not None:
            # included_strategy = set([search_rank(fund_rank, fund, metric='substrategy') for fund in prod.columns])
            included_risk = set([get_risk_level(search_rank(fund_rank, fund, metric='substrategy'))
                                 for fund in prod.columns])
李宗熹's avatar
李宗熹 committed
528 529

        # 待添加策略为所有策略-组合已包含策略
李宗熹's avatar
李宗熹 committed
530
        # add_strategy = all_strategy - included_strategy
李宗熹's avatar
李宗熹 committed
531
        add_risk = all_risk - included_risk
李宗熹's avatar
李宗熹 committed
532

赵杰's avatar
赵杰 committed
533 534 535
        candidate_funds = tamp_fund['fund_id'].to_list()
        candidate_info = []
        for proposal in candidate_funds:
李宗熹's avatar
李宗熹 committed
536
            if proposal in fund_rank['fund_id'].to_list() and proposal not in prod.columns:
李宗熹's avatar
李宗熹 committed
537
                proposal_z_score = search_rank(fund_rank, proposal, metric='z_score')
李宗熹's avatar
李宗熹 committed
538
                proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
赵杰's avatar
赵杰 committed
539 540 541
                proposal_risk = get_risk_level(proposal_strategy)
                if proposal_z_score >= 60:
                    candidate_info.append((proposal, proposal_z_score, proposal_risk))
李宗熹's avatar
李宗熹 committed
542

赵杰's avatar
赵杰 committed
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        candidate_info.sort(key=lambda elem: elem[1], reverse=True)
        # candidate_high_risk = [i[0] for i in list(filter(lambda x: x[2] == 'H', candidate_info))]
        # candidate_median_risk = [i[0] for i in list(filter(lambda x: x[2] == 'M', candidate_info))]
        # candidate_low_risk = [i[0] for i in list(filter(lambda x: x[2] == 'L', candidate_info))]
        candidate_funds = [i[0] for i in candidate_info]

        # 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金
        # for proposal in candidate_funds:
        #     proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
        #     if get_risk_level(proposal_strategy) in add_risk or not add_risk:
        #         # if proposal_z_score > 80:
        #         proposal_nav = get_tamp_nav(proposal, self.start_date, invest_type=self.invest_type)
        #         # 忽略净值周期大于周更的产品
        #         # if get_frequency(proposal_nav) <= 52:
        #         #     continue
        #
        #         self.freq_list.append(get_frequency(proposal_nav))
        #         proposal_nav = rename_col(proposal_nav, proposal)
        #
        #         # 按最大周期进行重采样,计算新建组合的相关性
        #         prod = pd.merge(prod, proposal_nav, how='outer', on='end_date').astype(float)
        #         prod.sort_index(inplace=True)
        #         prod.ffill(inplace=True)
        #         prod = resample(prod, get_trade_cal(), min(self.freq_list))
        #
        #         self.new_correlation = cal_correlation(prod)
        #         judge_correlation = self.new_correlation.fillna(0)
        #
        #         if np.all(judge_correlation < 0.8):
        #             self.proposal_fund.append(proposal)
        #             max_len -= 1
        #             # add_strategy -= {proposal_strategy}
        #             add_risk -= {get_risk_level(proposal_strategy)}
        #             # if len(add_strategy) == 0 or max_len == 0:
        #             if max_len == 0:
        #                 break
        #         else:
        #             prod.drop(columns=proposal, inplace=True)
        # 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金

        for proposal in candidate_funds:
            proposal_nav = get_tamp_nav(proposal, self.start_date, invest_type=self.invest_type)
            # 忽略净值周期大于周更的产品
            # if get_frequency(proposal_nav) <= 52:
            #     continue
            self.freq_list.append(get_frequency(proposal_nav))
            proposal_nav = rename_col(proposal_nav, proposal)

            # 按最大周期进行重采样,计算新建组合的相关性
            temp = pd.merge(prod, proposal_nav, how='outer', on='end_date').astype(float)
            temp.sort_index(inplace=True)
            temp.ffill(inplace=True)
            temp = resample(temp, get_trade_cal(), min(self.freq_list))
赵杰's avatar
赵杰 committed
596 597
            if "cal_date" in temp.columns:
                temp.drop(labels=['cal_date', 'end_date'], axis=1, inplace=True)
赵杰's avatar
赵杰 committed
598 599 600 601 602 603 604 605 606 607 608 609 610 611
            self.new_correlation = cal_correlation(temp)
            judge_correlation = self.new_correlation.fillna(0)

            if np.all(judge_correlation < 0.8):
                self.proposal_fund.append(proposal)
                max_len -= 1
                # add_strategy -= {proposal_strategy}
                add_risk -= {get_risk_level(proposal_strategy)}
                # if len(add_strategy) == 0 or max_len == 0:

                prod = temp

                if max_len == 0:
                    break
李宗熹's avatar
李宗熹 committed
612

李宗熹's avatar
李宗熹 committed
613
        prod.dropna(how='all', inplace=True)
赵杰's avatar
赵杰 committed
614
        prod.fillna(method='bfill', inplace=True)
李宗熹's avatar
李宗熹 committed
615 616 617
        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
618 619 620
        return prod

    def optimize(self, ):
李宗熹's avatar
李宗熹 committed
621 622
        import time
        start = time.time()
李宗熹's avatar
李宗熹 committed
623
        self.origin_portfolio = self.get_portfolio()
李宗熹's avatar
李宗熹 committed
624 625
        end1 = time.time()
        print("原始组合数据获取时间:", end1 - start)
李宗熹's avatar
李宗熹 committed
626
        self.abandoned_portfolio = self.abandon(self.origin_portfolio)
李宗熹's avatar
李宗熹 committed
627 628
        end2 = time.time()
        print("计算换仓基金时间:", end2 - end1)
李宗熹's avatar
李宗熹 committed
629
        self.propose_portfolio = self.proposal(self.abandoned_portfolio)
李宗熹's avatar
李宗熹 committed
630 631
        end3 = time.time()
        print("遍历产品池获取候选推荐时间:", end3 - end2)
李宗熹's avatar
李宗熹 committed
632
        # propose_portfolio.to_csv('test_portfolio.csv', encoding='gbk')
633

赵杰's avatar
赵杰 committed
634
        mu = [search_rank(fund_rank, x, 'annual_return') for x in self.propose_portfolio.columns]
李宗熹's avatar
李宗熹 committed
635
        S = risk_models.sample_cov(self.propose_portfolio, frequency=min(self.freq_list))
赵杰's avatar
赵杰 committed
636
        dd = [search_rank(fund_rank, x, 'max_drawdown') for x in self.propose_portfolio.columns]
637

李宗熹's avatar
李宗熹 committed
638
        # if self.client_type == 1:
639 640 641 642 643 644 645 646
        # proposal_risk = [[x, get_risk_level(search_rank(fund_rank, x, metric='substrategy'))] for x in
        #                  propose_portfolio.columns]
        # self.proposal_fund = list(filter(lambda x: x[1] != 'H', proposal_risk))

        # drop_fund_list = list(filter(lambda x: x[1] = 'H', proposal_risk))
        # proposal_portfolio = list((set(self.portfolio) - set(self.no_data_fund) - set(self.replace_pair.keys())) | \
        #                           (set(self.proposal_fund) | set(self.replace_pair.values())))
        # propose_portfolio.drop()
李宗熹's avatar
李宗熹 committed
647

李宗熹's avatar
李宗熹 committed
648
        propose_risk_mapper = dict()
李宗熹's avatar
李宗熹 committed
649
        for fund in self.propose_portfolio.columns:
李宗熹's avatar
李宗熹 committed
650 651
            propose_risk_mapper[fund] = str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))

李宗熹's avatar
李宗熹 committed
652
        if self.client_type == 1:
赵杰's avatar
赵杰 committed
653 654 655 656
            risk_upper = {"M": 0.4, "H": 0.0}
            risk_lower = {"L": 0.6}
            self.expect_return = 0.12
            self.expect_drawdown = 0.03
李宗熹's avatar
李宗熹 committed
657
        elif self.client_type == 2:
赵杰's avatar
赵杰 committed
658 659 660 661
            risk_upper = {"H": 0.2}
            risk_lower = {"L": 0.5, "M": 0.3}
            self.expect_return = 0.15
            self.expect_drawdown = 0.05
李宗熹's avatar
李宗熹 committed
662
        elif self.client_type == 3:
赵杰's avatar
赵杰 committed
663 664 665 666
            risk_upper = {"L": 0.3, "H": 0.3}
            risk_lower = {"M": 0.4}
            self.expect_return = 0.18
            self.expect_drawdown = 0.08
李宗熹's avatar
李宗熹 committed
667
        elif self.client_type == 4:
赵杰's avatar
赵杰 committed
668 669 670 671
            risk_upper = {"L": 0.2, "M": 0.4}
            risk_lower = {"H": 0.4}
            self.expect_return = 0.15
            self.expect_drawdown = 0.20
李宗熹's avatar
李宗熹 committed
672
        elif self.client_type == 5:
赵杰's avatar
赵杰 committed
673 674 675 676
            risk_upper = {"L": 0.0, "M": 0.4}
            risk_lower = {"H": 0.6}
            self.expect_return = 0.25
            self.expect_drawdown = 0.15
李宗熹's avatar
李宗熹 committed
677 678 679 680 681 682
        else:
            risk_upper = {"H": 1.0}
            risk_lower = {"L": 0.0}
            raise ValueError

        w_low = 1000000 / self.invest_amount
李宗熹's avatar
李宗熹 committed
683 684 685 686 687 688 689 690 691 692 693 694
        try:
            ef = EfficientFrontier(mu, S, weight_bounds=[w_low, 1], expected_drawdown=dd)
            # ef = EfficientFrontier(mu, S, weight_bounds=[0, 1], expected_drawdown=dd)
            ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
            ef.efficient_return(target_return=self.expect_return, target_drawdown=self.expect_drawdown)
            clean_weights = ef.clean_weights()
            ef.portfolio_performance(verbose=True)
            self.new_weights = np.array(list(clean_weights.values()))
        except:
            self.new_weights = np.asarray([1/len(self.propose_portfolio.columns)] * len(self.propose_portfolio.columns))

        print(self.new_weights)
李宗熹's avatar
李宗熹 committed
695 696
        end4 = time.time()
        print("模型计算一次时间:", end4 - end3)
李宗熹's avatar
李宗熹 committed
697 698 699 700
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)
李宗熹's avatar
李宗熹 committed
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

        # elif self.client_type == 2:
        # elif self.client_type == 3:
        # elif self.client_type == 4:
        # elif self.client_type == 5:
        # print(len(propose_portfolio.columns))
        # # 单支基金占投资额的下界为 100W/投资总额
        # # w_low = 1e6 / self.invest_amount
        # w_low = 0
        # w_origin, S, mu = optim_drawdown(propose_portfolio, 0.5, [w_low, 1], min(self.freq_list))
        # print(w_origin)
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)

    def return_compare(self):
李宗熹's avatar
李宗熹 committed
718
        index_data = get_index_daily(self.index_id, self.start_date)
李宗熹's avatar
李宗熹 committed
719
        index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
720 721
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1
        # origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
722
        propose_fund_return = self.propose_portfolio.iloc[:, :] / self.propose_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
723 724 725
        propose_fund_return['return'] = propose_fund_return.T.iloc[:, :].apply(lambda x: np.dot(self.new_weights, x))
        return index_return, propose_fund_return

赵杰's avatar
赵杰 committed
726 727 728
    def old_evaluation(self, group_name, group_result, data_adaptor):
        start_year = data_adaptor.start_date.year
        start_month = data_adaptor.start_date.month
赵杰's avatar
赵杰 committed
729 730 731
        current_year = data_adaptor.end_date.year
        current_month = data_adaptor.end_date.month
        current_day = data_adaptor.end_date.day
李宗熹's avatar
李宗熹 committed
732 733
        past_month = (current_year - start_year) * 12 + current_month - start_month

赵杰's avatar
赵杰 committed
734
        # 投入成本(万元)
李宗熹's avatar
李宗熹 committed
735
        input_cost = round(group_result[group_name]["total_cost"] / 10000, 2)
赵杰's avatar
赵杰 committed
736
        # 整体盈利(万元)
李宗熹's avatar
李宗熹 committed
737
        total_profit = round(group_result[group_name]["cumulative_profit"] / 10000, 2)
赵杰's avatar
赵杰 committed
738 739
        # 整体表现 回撤能力
        fund_rank_data = fund_rank[fund_rank["fund_id"].isin(self.portfolio)]
赵杰's avatar
赵杰 committed
740 741
        z_score = (group_result[group_name]["cumulative_return"] - 1)*100
        drawdown_rank = group_result[group_name]["max_drawdown"][0]*100
赵杰's avatar
赵杰 committed
742
        return_rank_df = fund_rank_data["annual_return_rank"]
赵杰's avatar
赵杰 committed
743 744 745 746 747 748 749 750
        z_score_level = np.select([z_score > 20,
                                   15 <= z_score < 20,
                                   10 <= z_score < 15,
                                   z_score < 10], [0, 1, 2, 3]).item()
        drawdown_level = np.select([drawdown_rank <= 5,
                                    5 <= drawdown_rank < 7,
                                    7 <= drawdown_rank < 10,
                                    drawdown_rank > 10], [0, 1, 2, 3]).item()
赵杰's avatar
赵杰 committed
751 752 753 754 755 756 757
        # 收益稳健
        fund_rank_re = fund_rank_data[fund_rank_data["annual_return_rank"] > 0.8]
        return_rank_evaluate = ""
        if len(fund_rank_re) > 0:
            num = len(fund_rank_re)
            fund_id_rank_list = list(fund_rank_re["fund_id"])
            for f_id in fund_id_rank_list:
李宗熹's avatar
李宗熹 committed
758 759
                name = data_adaptor.user_customer_order_df[data_adaptor.user_customer_order_df["fund_id"] == f_id][
                    "fund_name"].values[0]
赵杰's avatar
赵杰 committed
760
                return_rank_evaluate = return_rank_evaluate + name + "、"
李宗熹's avatar
李宗熹 committed
761
            return_rank_evaluate = return_rank_evaluate[:-1] + "等" + str(num) + "只产品稳健,对组合的收益率贡献明显,"
赵杰's avatar
赵杰 committed
762 763 764

        # 正收益基金数量
        group_hold_data = pd.DataFrame(group_result[group_name]["group_hoding_info"])
赵杰's avatar
赵杰 committed
765
        profit_positive_num = len(group_hold_data[group_hold_data["profit"] > 0]["fund_name"].unique())
赵杰's avatar
赵杰 committed
766
        if profit_positive_num > 0:
767
            profit_positive_evaluate = str(profit_positive_num) + "只基金取得正收益,"
赵杰's avatar
赵杰 committed
768 769 770 771 772 773 774 775 776 777 778 779 780
        else:
            profit_positive_evaluate = ""

        # 综合得分较低数量
        abandon_num = len(self.abandon_fund_score)
        abandon_evaluate = str(abandon_num) + "只基金综合得分较低建议更换,"

        # 成立时间短
        if len(self.no_data_fund) > 0:
            no_data_fund_evaluate = str(len(self.no_data_fund)) + "只基金因为成立时间较短,暂不做评价;"
        else:
            no_data_fund_evaluate = ";"

李宗熹's avatar
李宗熹 committed
781 782
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
赵杰's avatar
赵杰 committed
783 784 785 786 787 788
        strategy_list = group_order_df["substrategy"]
        uniqe_strategy = list(strategy_list.unique())
        uniqe_strategy_name = [dict_substrategy[int(x)] + "、" for x in uniqe_strategy]
        # 覆盖的基金名称
        strategy_name_evaluate = "".join(uniqe_strategy_name)[:-1]

pengxiong's avatar
pengxiong committed
789
        try:
赵杰's avatar
赵杰 committed
790
            if len(uniqe_strategy) > 3:
pengxiong's avatar
pengxiong committed
791 792 793
                strategy_distribution_evaluate = "策略上有一定分散"
            else:
                strategy_distribution_evaluate = "策略分散程度不高"
赵杰's avatar
赵杰 committed
794
        except:
赵杰's avatar
赵杰 committed
795 796 797
            strategy_distribution_evaluate = "策略分散程度不高"
        # 相关性
        if len(self.abandon_fund_corr) > 0:
李宗熹's avatar
李宗熹 committed
798 799
            fund_corr_name = [str(group_order_df[group_order_df["fund_id"] == f_id]["fund_name"].values[0]) + "和" for
                              f_id in self.abandon_fund_corr]
赵杰's avatar
赵杰 committed
800 801 802 803
            fund_corr_evaluate = "".join(fund_corr_name)[:-1] + "相关性较高,建议调整组合配比;"
        else:
            fund_corr_evaluate = ";"

李宗熹's avatar
李宗熹 committed
804
        num_fund = len(self.portfolio)
赵杰's avatar
赵杰 committed
805
        evaluate_enum = [["优秀", "良好", "一般", "较差"],
李宗熹's avatar
李宗熹 committed
806
                         ["优秀", "良好", "合格", "较差"]]
李宗熹's avatar
李宗熹 committed
807

赵杰's avatar
赵杰 committed
808 809
        if data_adaptor.total_result_data["cumulative_profit"] < 0 and z_score_level == 0:
            z_score_level = 2
赵杰's avatar
赵杰 committed
810

赵杰's avatar
赵杰 committed
811 812
        z_score_evaluate = evaluate_enum[0][z_score_level]
        drawdown_evaluate = evaluate_enum[1][drawdown_level]
赵杰's avatar
赵杰 committed
813 814 815 816 817 818 819 820 821
        if z_score_evaluate in ["优秀", "良好"]:
            z_score_evaluate = """<span class="self_description_red">{}</span>""".format(z_score_evaluate)
        else:
            z_score_evaluate = """<span class="self_description_green">{}</span>""".format(z_score_evaluate)

        if drawdown_evaluate in ["优秀", "良好"]:
            drawdown_evaluate = """<span class="self_description_red">{}</span>""".format(drawdown_evaluate)
        else:
            drawdown_evaluate = """<span class="self_description_green">{}</span>""".format(drawdown_evaluate)
赵杰's avatar
赵杰 committed
822 823 824 825 826 827 828 829 830 831 832 833

        sentence = {
            1: "1、组合构建于{}年{}月,至今已运行{}个月。投入成本为{}万元,截止{}年{}月{}日,整体盈利{}万元,整体表现{},回撤控制能力{};\n",
            2: "2、组合共持有{}只基金,{}{}{}{}\n",
            3: "3、策略角度来看,组合涵盖了{}, {}{}\n"
        }

        data = {1: [start_year, start_month, past_month, input_cost, current_year, current_month, current_day,
                    total_profit, z_score_evaluate, drawdown_evaluate],
                2: [num_fund, return_rank_evaluate, profit_positive_evaluate, abandon_evaluate, no_data_fund_evaluate],
                3: [strategy_name_evaluate, strategy_distribution_evaluate, fund_corr_evaluate]
                }
赵杰's avatar
赵杰 committed
834
        ret = []
赵杰's avatar
赵杰 committed
835
        for k, v in data.items():
赵杰's avatar
赵杰 committed
836
            ret.append(sentence[k].format(*data[k]).replace(",;", ";"))
赵杰's avatar
赵杰 committed
837 838 839 840

        # 旧组合累积收益df
        group_result_data = group_result[group_name]
        hold_info = group_result_data["group_hoding_info"]
赵杰's avatar
赵杰 committed
841
        hold_info_df = pd.DataFrame(hold_info)
赵杰's avatar
赵杰 committed
842 843 844
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
        group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())
赵杰's avatar
赵杰 committed
845 846

        freq_max = group_order_df["freq"].max()
赵杰's avatar
赵杰 committed
847 848
        if math.isnan(freq_max):
            freq_max = 1
赵杰's avatar
赵杰 committed
849 850
        n_freq = freq_days(int(freq_max))

赵杰's avatar
赵杰 committed
851 852 853
        old_return_df = group_result_data["return_df"]
        old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"] - 1

赵杰's avatar
赵杰 committed
854 855 856 857 858 859 860 861
        # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
        total_asset = round(hold_info_df["market_values"].sum(), 2)
        old_return = group_result_data["cumulative_return"]
        old_return_ratio_year = group_result_data["return_ratio_year"]
        old_volatility = group_result_data["volatility"]
        old_max_drawdown = group_result_data["max_drawdown"]
        old_sharpe = group_result_data["sharpe"]

赵杰's avatar
赵杰 committed
862
        # 指数收益
赵杰's avatar
赵杰 committed
863 864 865 866
        # index_data = get_index_daily(self.index_id, self.start_date)
        # index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
        index_data = data_adaptor.fund_cnav_total[["index"]]
        index_data = index_data[index_data.index >= pd.to_datetime(data_adaptor.start_date)]
赵杰's avatar
赵杰 committed
867 868 869 870
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1

        # 指数收益
        index_return = index_return[index_return.index >= group_order_start_date]
赵杰's avatar
赵杰 committed
871 872 873
        index_return["index"] = index_return["index"].astype('float')
        start_index_return = index_return["index"].values[0]
        index_return["new_index_return"] = (index_return["index"] - start_index_return) / (1 + start_index_return)
赵杰's avatar
赵杰 committed
874 875 876 877 878 879 880 881
        index_return_ratio = index_return["new_index_return"].values[-1]
        index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1],
                                                index_return["new_index_return"], n_freq)
        index_volatility = volatility(index_return["new_index_return"] + 1, n_freq)
        index_drawdown = max_drawdown(index_return["new_index_return"] + 1)
        index_sim = simple_return(index_return["new_index_return"]+1)
        index_exc = excess_return(index_sim, BANK_RATE, n_freq)
        index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
赵杰's avatar
赵杰 committed
882 883 884 885 886

        # 收益对比数据
        return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]],
                                     right_index=True,
                                     left_index=True)
赵杰's avatar
赵杰 committed
887 888 889 890 891
        start = return_compare_df.index.values[0]
        if start > pd.to_datetime(self.start_date):
            row = [0, 0]
            return_compare_df.loc[pd.to_datetime(self.start_date)] = row

赵杰's avatar
赵杰 committed
892
        return_compare_df["date"] = return_compare_df.index
赵杰's avatar
赵杰 committed
893
        return_compare_df.sort_values(by="date", inplace=True)
赵杰's avatar
赵杰 committed
894 895 896 897
        return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
        return_compare_df.iloc[1:-1, :]["date"] = ""
        old_return_compare_result = {

赵杰's avatar
赵杰 committed
898 899
            "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
            "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
赵杰's avatar
赵杰 committed
900 901
            "xlabels": return_compare_df["date"].values
        }
赵杰's avatar
赵杰 committed
902
        # 指标对比
赵杰's avatar
赵杰 committed
903 904 905 906 907 908 909 910 911
        old_indicator = {"group_name": "现有持仓组合", "return_ratio": "%.2f" % round((old_return - 1) * 100, 2),
                         "return_ratio_year": "%.2f" % round(old_return_ratio_year * 100, 2),
                         "volatility": "%.2f" % round(old_volatility * 100, 2),
                         "max_drawdown": "%.2f" % round(old_max_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(old_sharpe, 2)}

        index_indicator = {"group_name": "中证500", "return_ratio": "%.2f" % round(index_return_ratio * 100, 2),
                           "return_ratio_year": "%.2f" % round(index_return_ratio_year * 100, 2),
                           "volatility": "%.2f" % round(index_volatility * 100, 2),
                           "max_drawdown": "%.2f" % round(index_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(index_sharpe, 2)}
赵杰's avatar
赵杰 committed
912
        old_indicator_compare = [old_indicator, index_indicator]
赵杰's avatar
赵杰 committed
913

赵杰's avatar
赵杰 committed
914
        return ret, old_return_compare_result, old_indicator_compare
李宗熹's avatar
李宗熹 committed
915

916
    def new_evaluation(self, group_name, group_result, data_adaptor):
李宗熹's avatar
李宗熹 committed
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        try:
            group_result_data = group_result[group_name]
            hold_info = group_result_data["group_hoding_info"]
            hold_info_df = pd.DataFrame(hold_info)
            group_order_df = data_adaptor.user_customer_order_df[
                data_adaptor.user_customer_order_df["folio_name"] == group_name]
            group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())

            # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
            total_asset = round(hold_info_df["market_values"].sum(), 2)
            old_return = group_result_data["cumulative_return"]
            old_return_ratio_year = group_result_data["return_ratio_year"]
            old_volatility = group_result_data["volatility"]
            old_max_drawdown = group_result_data["max_drawdown"]
            old_sharpe = group_result_data["sharpe"]

            # 建议基金数据
            index_return, propose_fund_return = self.return_compare()
            propose_fund_id_list = list(propose_fund_return.columns)
            propose_fund_id_list.remove("return")
            with TAMP_SQL(tamp_product_engine) as tamp_product:
                tamp_product_session = tamp_product.session
                sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
                cur = tamp_product_session.execute(sql_product)
                data = cur.fetchall()
                product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
            propose_fund_df = product_df[product_df["fund_id"].isin(propose_fund_id_list)]

            # 基金名称,策略分级
            propose_fund_id_name_list = [propose_fund_df[propose_fund_df["fund_id"] == fund_id]["fund_name"].values[0] for
                                         fund_id in propose_fund_id_list]
            propose_fund_id_strategy_name_list = [dict_substrategy[int(propose_fund_df[propose_fund_df["fund_id"] == fund_id]["substrategy"].values[0])] for
                                         fund_id in propose_fund_id_list]
            propose_fund_asset = [round(self.new_weights[i] * total_asset, 2) for i in range(len(propose_fund_id_name_list))]

            propose_info = {propose_fund_id_strategy_name_list[i]:
                                {"fund_name": propose_fund_id_name_list[i],
                                 "substrategy": propose_fund_id_strategy_name_list[i],
                                 "asset": propose_fund_asset[i]}
                            for i in range(len(propose_fund_id_list))}
            # 调仓建议
            suggestions_result = {}
            old_hold_fund_name_list = list(hold_info_df["fund_name"])
            for hold in hold_info:
赵杰's avatar
赵杰 committed
961
                suggestions = {}
李宗熹's avatar
李宗熹 committed
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                if hold["fund_strategy_name"] not in suggestions_result.keys():
                    suggestions_result[hold["fund_strategy_name"]] = {}
                suggestions["fund_strategy_name"] = hold["fund_strategy_name"]
                suggestions["fund_name"] = hold["fund_name"]
                suggestions["before_optimization"] = hold["market_values"]
                suggestions["after_optimization"] = 0
                if suggestions["fund_strategy_name"] in propose_fund_id_strategy_name_list:
                    suggestions["after_optimization"] = 0
                suggestions_result[hold["fund_strategy_name"]][suggestions["fund_name"]] = suggestions

            for key, value in propose_info.items():
                if value["fund_name"] not in old_hold_fund_name_list:
                    suggestions = {}
                    if key not in suggestions_result.keys():
                        suggestions_result[key] = {}
                    suggestions["fund_strategy_name"] = value["substrategy"]
                    suggestions["fund_name"] = value["fund_name"]
                    suggestions["before_optimization"] = 0
                    suggestions["after_optimization"] = value["asset"]
                    suggestions_result[key][suggestions["fund_name"]] = suggestions
赵杰's avatar
赵杰 committed
982 983 984
                else:
                    suggestions_result[key][value["fund_name"]]["after_optimization"] = value["asset"]

李宗熹's avatar
李宗熹 committed
985 986 987 988 989 990
            for key, value in suggestions_result.items():
                suggestions_result[key] = list(value.values())
            suggestions_result_asset = {"before": total_asset, "after": total_asset}

            # 旧组合累积收益df
            old_return_df = group_result_data["return_df"]
赵杰's avatar
赵杰 committed
991
            # old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"]
李宗熹's avatar
李宗熹 committed
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            # 新组合累积收益df
            propose_fund_return_limit_data = propose_fund_return[propose_fund_return.index >= group_order_start_date]
            start_return = propose_fund_return_limit_data['return'].values[0]
            propose_fund_return_limit_data["new_return"] = (propose_fund_return_limit_data["return"] - start_return)/(1+start_return)

            # 新组合累积收益
            new_return_ratio = propose_fund_return_limit_data["new_return"].values[-1]
            # 新组合区间年化收益率
            freq_max = group_order_df["freq"].max()
            n_freq = freq_days(int(freq_max))
            new_return_ratio_year = annual_return(propose_fund_return_limit_data["new_return"].values[-1], propose_fund_return_limit_data, n_freq)

            # 新组合波动率
            new_volatility = volatility(propose_fund_return_limit_data["new_return"]+1, n_freq)

            # 新组合最大回撤
            new_drawdown = max_drawdown(propose_fund_return_limit_data["new_return"]+1)

            # 新组合夏普比率
            sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
            exc = excess_return(sim, BANK_RATE, n_freq)
赵杰's avatar
赵杰 committed
1013 1014 1015 1016 1017 1018
            try:
                new_sharpe = sharpe_ratio(exc, sim, n_freq)
                if new_sharpe is None or math.isnan(new_sharpe):
                    new_sharpe = 0
            except:
                new_sharpe = 0
李宗熹's avatar
李宗熹 committed
1019 1020 1021 1022 1023 1024 1025 1026 1027

            # 指数收益
            index_return = index_return[index_return.index >= group_order_start_date]
            start_index_return = index_return[" close"].values[0]
            index_return["new_index_return"] = (index_return[" close"] - start_index_return) / (1 + start_index_return)
            index_return_ratio = index_return["new_index_return"].values[-1]
            index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], n_freq)
            index_volatility = volatility(index_return["new_index_return"]+1, n_freq)
            index_drawdown = max_drawdown(index_return["new_index_return"]+1)
赵杰's avatar
赵杰 committed
1028
            index_sim = simple_return(index_return["new_index_return"]+1)
李宗熹's avatar
李宗熹 committed
1029
            index_exc = excess_return(index_sim, BANK_RATE, n_freq)
赵杰's avatar
赵杰 committed
1030 1031 1032 1033 1034 1035
            try:
                index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
                if index_sharpe is None or math.isnan(index_sharpe):
                    index_sharpe = 0.0
            except:
                index_sharpe = 0.0
李宗熹's avatar
李宗熹 committed
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

            # 收益对比数据
            return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]], right_index=True,
                     left_index=True)
            return_compare_df = pd.merge(return_compare_df, propose_fund_return_limit_data["new_return"], right_index=True,
                     left_index=True)
            return_compare_df["date"] = return_compare_df.index
            return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
            return_compare_df.iloc[1:-1,:]["date"] = ""
            return_compare_result = {
赵杰's avatar
赵杰 committed
1046 1047 1048
                "new_combination": {"name": "新组合", "data": return_compare_df["new_return"].values*100},
                "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
                "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
李宗熹's avatar
李宗熹 committed
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
                "xlabels": return_compare_df["date"].values
            }

            # 指标对比
            old_indicator = {"group_name": "现有持仓组合", "return_ratio": round((old_return-1)*100, 2), "return_ratio_year": round(old_return_ratio_year*100,2),
                             "volatility": round(old_volatility*100, 2), "max_drawdown": round(old_max_drawdown[0]*100, 2), "sharpe": round(old_sharpe, 2)}
            new_indicator = {"group_name": "建议优化组合", "return_ratio": round(new_return_ratio*100, 2), "return_ratio_year": round(new_return_ratio_year*100, 2),
                             "volatility": round(new_volatility*100, 2), "max_drawdown": round(new_drawdown[0]*100, 2), "sharpe": round(new_sharpe, 2)}
            index_indicator = {"group_name": "中证500", "return_ratio": round(index_return_ratio*100, 2), "return_ratio_year": round(index_return_ratio_year*100, 2),
                             "volatility": round(index_volatility*100, 2), "max_drawdown": round(index_drawdown[0]*100, 2), "sharpe": round(index_sharpe, 2)}
            indicator_compare = [new_indicator, old_indicator, index_indicator]


            # 在保留{}的基础上,建议赎回{},并增配{}后,整体组合波动率大幅降低,最大回撤从{}降到不足{},年化收益率提升{}个点
            hold_fund = set(self.portfolio) - set(self.abandon_fund_score + self.abandon_fund_corr + self.no_data_fund)
            hold_fund_name = [get_fund_name(x).values[0][0] for x in hold_fund]
            abandon_fund = (self.abandon_fund_score + self.abandon_fund_corr)
            abandon_fund_name = [get_fund_name(x).values[0][0] for x in abandon_fund]
            proposal_fund = self.proposal_fund
            proposal_fund_name = [get_fund_name(x).values[0][0] for x in proposal_fund]

            sentence = []
赵杰's avatar
赵杰 committed
1071
            if len(hold_fund) > 0:
李宗熹's avatar
李宗熹 committed
1072
                sentence.append("在保留" + "".join([i + "," for i in hold_fund_name]).rstrip(",") + "的基础上")
赵杰's avatar
赵杰 committed
1073
            if len(abandon_fund) > 0:
李宗熹's avatar
李宗熹 committed
1074
                sentence.append("建议赎回" + "".join([i + "," for i in abandon_fund_name]).rstrip(","))
赵杰's avatar
赵杰 committed
1075
            if len(proposal_fund) > 0:
李宗熹's avatar
李宗熹 committed
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
                sentence.append("增配" + "".join([i + "," for i in proposal_fund_name]).rstrip(",") + "后")
            if new_volatility < old_volatility * 0.9:
                sentence.append("整体组合波动率大幅降低")
            if new_drawdown < old_max_drawdown:
                sentence.append("最大回撤从{:.2%}降到不足{:.2%}".format(old_max_drawdown[0], new_drawdown[0]))
            if new_return_ratio_year > old_return_ratio_year:
                sentence.append("年化收益率提升{:.2f}个点".format((new_return_ratio_year - old_return_ratio_year) * 100))

            whole_sentence = ",".join(sentence).lstrip(",") + "。"
            return suggestions_result, suggestions_result_asset, return_compare_result, indicator_compare, whole_sentence
        except Exception as e:
            repr(e)
李宗熹's avatar
李宗熹 committed
1088
            return None, None, None, None, None
李宗熹's avatar
李宗熹 committed
1089

李宗熹's avatar
李宗熹 committed
1090
    def single_evaluation(self, fund_id, objective=False):
李宗熹's avatar
李宗熹 committed
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        """
           1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
           2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
           3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
           4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
           5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%

           旧个基显示1-4,新个基显示1-5。

           旧个基如果是要保留的,显示好的评价。
                如果是要剔除的,显示坏的评价。

           新个基只显示好的评价。
        Args:
            fund_id:

        Returns:
        """
        z_score = search_rank(fund_rank, fund_id, metric='z_score')
        total_level = np.select([z_score >= 80,
                                 70 <= z_score < 80,
                                 z_score < 70], [0, 1, 2]).item()

李宗熹's avatar
李宗熹 committed
1114 1115 1116 1117 1118 1119 1120 1121
        index_return_monthly = get_index_monthly(self.index_id, self.start_date)
        fund_nav = get_tamp_nav(fund_id, self.start_date, invest_type=self.invest_type)
        fund_nav_monthly = fund_nav.groupby([fund_nav.index.year, fund_nav.index.month]).tail(1)
        fund_nav_monthly = rename_col(fund_nav_monthly, fund_id)
        fund_return_monthly = simple_return(fund_nav_monthly[fund_id].astype(float))
        index_return_monthly.index = index_return_monthly.index.strftime('%Y-%m')
        fund_return_monthly.index = fund_return_monthly.index.strftime('%Y-%m')
        compare = pd.merge(index_return_monthly, fund_return_monthly, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
1122
        fund_win_rate = ((compare[fund_id] - compare['pct_chg']) > 0).sum() / compare[fund_id].count()
李宗熹's avatar
李宗熹 committed
1123

李宗熹's avatar
李宗熹 committed
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        return_rank = search_rank(fund_rank, fund_id, metric='annual_return_rank')
        return_level = np.select([return_rank >= 0.8,
                                  0.7 <= return_rank < 0.8,
                                  0.6 <= return_rank < 0.7,
                                  return_rank < 0.6], [0, 1, 2, 3]).item()
        return_bool = 1 if return_level > 2 else 0
        return_triple = return_level - 1 if return_level >= 2 else return_level

        drawdown_rank = search_rank(fund_rank, fund_id, metric='max_drawdown_rank')
        drawdown_value = search_rank(fund_rank, fund_id, metric='max_drawdown')
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        drawdown_bool = 1 if drawdown_level > 2 else 0
        drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

        sharp_rank = search_rank(fund_rank, fund_id, metric='sharp_ratio_rank')
        sharp_level = np.select([sharp_rank >= 0.8,
                                 0.6 <= sharp_rank < 0.8,
                                 sharp_rank < 0.6], [0, 1, 2]).item()

        data = {1: [total_level, return_level, drawdown_level, sharp_level],
李宗熹's avatar
李宗熹 committed
1147
                2: [return_triple, format(fund_win_rate, '.2%'), return_bool],
李宗熹's avatar
李宗熹 committed
1148
                3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
李宗熹's avatar
李宗熹 committed
1149 1150
                4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

李宗熹's avatar
李宗熹 committed
1151
        if fund_id in self.abandon_fund_score:
李宗熹's avatar
李宗熹 committed
1152 1153 1154 1155 1156 1157 1158 1159
            data['remove'] = True
        elif fund_id in self.proposal_fund:
            data[5] = [1] * 7
            data['remove'] = False
        else:
            data['remove'] = False

        x = '30%'
李宗熹's avatar
李宗熹 committed
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        content = {
            # 第一个评价
            1: [["优秀", "良好", "一般"],
                ["优秀", "良好", "合格", "较差"],
                ["优秀", "良好", "合格", "较差"],
                ["高", "一般", "较低"]],
            # 第二个评价
            2: [["高于", "持平", "低于"],
                x,
                ["优秀", "一般"]],
            # 第三个评价
            3: [["优秀", "良好", "一般"],
                ["高", "中", "低"], x,
                ["高于", "持平", "低于"]],
            # 第四个评价
            4: [["较好", "较差"],
                ["较小", "较大"],
                ["较小", "较小"],
                ["较大", "较小"],
                ["较低", "较高"]],
            5: [["TO DO"]] * 7}
李宗熹's avatar
李宗熹 committed
1181 1182

        sentence = {
李宗熹's avatar
李宗熹 committed
1183
            1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
李宗熹's avatar
李宗熹 committed
1184
            2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
李宗熹's avatar
李宗熹 committed
1185 1186 1187
            3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
            4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n",
            5: "基金经理,投资年限%s年,经验丰富;投资能力较强,生涯中共管理过%s只基金,历任的%s只基金平均业绩在同类中处于上游水平,其中%s只排名在前%s;生涯年化回报率%s,同期大盘只有%s;"}
李宗熹's avatar
李宗熹 committed
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        remove = data["remove"]
        del data["remove"]

        # 不剔除,选择好的话术
        if not remove:
            evaluation = choose_good_evaluation(data)
        # 剔除,选择坏的话术
        else:
            evaluation = choose_bad_evaluation(data)

李宗熹's avatar
李宗熹 committed
1199
        ret = []
李宗熹's avatar
李宗熹 committed
1200 1201
        fund_name = get_fund_name(fund_id).values[0][0]

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        # 默认评价
        # try:
        #     default_evaluation = pd.read_csv("./app/service/evaluation.csv", encoding='utf-8', names=['fund_id', 'eval'])
        #     if default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0]:
        #         ret.append('1、' + default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0])
        #
        #         evaluation_dict = {'name': fund_name, 'data': ret}
        #
        #         if objective:
        #             if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
        #                 evaluation_dict['status'] = "换仓"
        #             elif fund_id in self.portfolio:
        #                 evaluation_dict['status'] = "保留"
        #         else:
        #             evaluation_dict['status'] = ""
        #         return evaluation_dict
        # except Exception as e:
        #     pass
李宗熹's avatar
李宗熹 committed
1220

李宗熹's avatar
李宗熹 committed
1221
        i = 1
李宗熹's avatar
李宗熹 committed
1222
        for k, v in evaluation.items():
李宗熹's avatar
李宗熹 committed
1223
            single_sentence = str(i) + "、" + sentence[k] % translate_single(content, k, v)
李宗熹's avatar
李宗熹 committed
1224 1225
            ret.append(single_sentence)
            i += 1
李宗熹's avatar
李宗熹 committed
1226

李宗熹's avatar
李宗熹 committed
1227 1228
        evaluation_dict = {'name': fund_name, 'data': ret}

李宗熹's avatar
李宗熹 committed
1229
        if objective:
李宗熹's avatar
李宗熹 committed
1230 1231 1232 1233
            if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
                evaluation_dict['status'] = "换仓"
            elif fund_id in self.portfolio:
                evaluation_dict['status'] = "保留"
李宗熹's avatar
李宗熹 committed
1234 1235
        else:
            evaluation_dict['status'] = ""
李宗熹's avatar
李宗熹 committed
1236
        return evaluation_dict
李宗熹's avatar
李宗熹 committed
1237

李宗熹's avatar
李宗熹 committed
1238
    def old_portfolio_evaluation(self, objective=False):
李宗熹's avatar
李宗熹 committed
1239 1240 1241 1242
        try:
            result = []
            for fund in self.portfolio:
                try:
李宗熹's avatar
李宗熹 committed
1243
                    result.append(self.single_evaluation(fund, objective))
李宗熹's avatar
李宗熹 committed
1244 1245 1246 1247 1248 1249 1250
                except IndexError:
                    continue
            return result
        except Exception as e:
            repr(e)
            return None

李宗熹's avatar
李宗熹 committed
1251
    def propose_fund_evaluation(self, ):
李宗熹's avatar
李宗熹 committed
1252 1253 1254 1255 1256 1257 1258 1259
        try:
            result = []
            for fund in self.proposal_fund:
                result.append(self.single_evaluation(fund))
            return result
        except Exception as e:
            repr(e)
            return None
李宗熹's avatar
李宗熹 committed
1260

李宗熹's avatar
李宗熹 committed
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    def single_fund_radar(self):
        radar_data = []
        for fund in self.portfolio:
            try:
                radar_data.append(get_radar_data(fund))
            except IndexError:
                continue
        return radar_data

    def propose_fund_radar(self):
        radar_data = []
        for fund in self.proposal_fund:
            radar_data.append(get_radar_data(fund))
        return radar_data

赵杰's avatar
赵杰 committed
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    def original_fund_index_compare(self, total_fund_cnav_df):
        compare_data = []
        for fund in self.portfolio:
            data_df = total_fund_cnav_df[[fund, "index"]].dropna()
            data_df[fund + "_return_ratio"] = (data_df[fund] / data_df[fund].iloc[0] - 1)*100
            data_df["index_return_ratio"] = (data_df["index"] / data_df["index"].iloc[0] - 1) * 100
            xlabels = ["" for i in range(len(data_df))]

            com_data = {
                "xlabels": xlabels,
                "index": {'name': '中证500', 'data': data_df["index_return_ratio"].values},
                "fund": {'name': fund, 'data': data_df[fund + "_return_ratio"].values},
            }
            compare_data.append(com_data)
        return compare_data
李宗熹's avatar
李宗熹 committed
1291

李宗熹's avatar
李宗熹 committed
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
# portfolio = ['HF00002JJ2', 'HF00005DBQ', 'HF0000681Q', 'HF00006693', 'HF00006AZF', 'HF00006BGS']
# portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
# portfolio_diagnose.optimize()
# if __name__ == '__main__':
    # print(portfolio_diagnose.single_fund_radar())
    # print(portfolio_diagnose.propose_fund_radar())
    # print(portfolio_diagnose.old_portfolio_evaluation())
    # print('旧组合相关性:', portfolio_diagnose.old_correlation)
    # print('新组合相关性:', portfolio_diagnose.new_correlation)
    # print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
    # print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())
    # print(portfolio_diagnose.single_evaluation(fund_id='HF0000681Q'))