fund_rank.py 13.1 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1

李宗熹's avatar
李宗熹 committed
2
from sqlalchemy import create_engine
李宗熹's avatar
李宗熹 committed
3

李宗熹's avatar
李宗熹 committed
4

李宗熹's avatar
李宗熹 committed
5 6 7 8 9 10
# db = create_engine(
#     'mysql+pymysql://tamp_fund:@imeng408@tamper.mysql.polardb.rds.aliyuncs.com:3306/tamp_fund?charset=utf8mb4',
#     pool_size=50,
#     pool_recycle=3600,
#     pool_pre_ping=True)
# con = db.connect()
李宗熹's avatar
李宗熹 committed
11

李宗熹's avatar
李宗熹 committed
12
import logging
李宗熹's avatar
李宗熹 committed
13
logging.basicConfig(level=logging.INFO)
李宗熹's avatar
李宗熹 committed
14

李宗熹's avatar
李宗熹 committed
15
from app.api.engine import tamp_fund_engine, TAMP_SQL
李宗熹's avatar
李宗熹 committed
16
from app.utils.week_evaluation import *
李宗熹's avatar
李宗熹 committed
17 18


李宗熹's avatar
李宗熹 committed
19 20 21 22 23 24
# con = pymysql.connect(host='tamper.mysql.polardb.rds.aliyuncs.com',
#                       user='tamp_fund',
#                       password='@imeng408',
#                       database='tamp_fund',
#                       charset='utf8',
#                       use_unicode='True')
李宗熹's avatar
李宗熹 committed
25 26


李宗熹's avatar
李宗熹 committed
27 28 29 30 31 32 33 34 35 36 37 38
def get_nav(fund, start_date, rollback=False, invest_type='public'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
李宗熹's avatar
李宗熹 committed
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == 'public':
            sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
                  "WHERE ts_code='{}'".format(fund)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['ts_code', 'end_date', 'adj_nav']).dropna(how='any')
            df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
        else:
            sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
                  "WHERE fund_id='{}'".format(fund)
            # df = pd.read_sql(sql, con).dropna(how='any')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
            df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)

        if df['adj_nav'].count() == 0:
            logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
            return None

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
        return df
李宗熹's avatar
李宗熹 committed
72 73 74


def get_frequency(df):
李宗熹's avatar
李宗熹 committed
75 76 77 78 79 80 81 82
    """获取基金净值一年当中公布的频率

    Args:
        df[DataFrame]:以基金净值公布日期为索引的基金净值表

    Returns:[int]: 年公布频率;查询失败则返回ValueError

    """
李宗熹's avatar
李宗熹 committed
83
    index_series = df.index.to_series()
李宗熹's avatar
李宗熹 committed
84 85 86
    # freq_series = index_series - index_series.shift(1)
    freq_series = index_series.diff(1)
    logging.log(logging.DEBUG, freq_series.describe())
李宗熹's avatar
李宗熹 committed
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    f = freq_series.mode()[0].days
    if f in range(0, 3):
        return 250
    elif f in range(6, 9):
        return 52
    elif f in range(13, 18):
        return 24
    elif f in range(28, 33):
        return 12
    elif f in range(110, 133):
        return 3
    else:
        raise ValueError


李宗熹's avatar
李宗熹 committed
102 103
def get_trade_cal():
    """获取上交所交易日历表
李宗熹's avatar
李宗熹 committed
104

李宗熹's avatar
李宗熹 committed
105
    Returns:df[DataFrame]: 索引为交易日, 列为交易日的上交所交易日历表
李宗熹's avatar
李宗熹 committed
106

李宗熹's avatar
李宗熹 committed
107
    """
李宗熹's avatar
李宗熹 committed
108 109 110 111 112 113 114 115 116 117
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        sql = 'SELECT cal_date FROM stock_trade_cal WHERE is_open=1'
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['cal_date']).dropna(how='all')
        # df = pd.read_sql(sql, con)
        df['end_date'] = pd.to_datetime(df['cal_date'])
        df.set_index('end_date', drop=False, inplace=True)
        return df
李宗熹's avatar
李宗熹 committed
118 119 120 121 122 123 124 125 126 127 128


def get_manager(invest_type):
    """获取基金对应基金经理表

    Args:
        invest_type: 资产类型:公募, 私募等

    Returns:

    """
李宗熹's avatar
李宗熹 committed
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == 'public':
            sql = 'SELECT ts_code, name FROM public_fund_manager WHERE end_date IS NULL'
            # df = pd.read_sql(sql, con)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['ts_code', 'name'])
        else:
            sql = 'SELECT fund_id, fund_manager_id FROM fund_manager_mapping'
            # df = pd.read_sql(sql, con)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_id', 'fund_manager_id'])
        return df
李宗熹's avatar
李宗熹 committed
144 145


李宗熹's avatar
李宗熹 committed
146 147 148 149 150 151 152 153 154 155
def get_fund_info(end_date, invest_type):
    """[summary]

    Args:
        end_date ([type]): [description]
        invest_type ([type]): [description]

    Returns:
        [type]: [description]
    """
李宗熹's avatar
李宗熹 committed
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == 'public':
            sql = "SELECT ts_code, fund_type, management FROM public_fund_basic " \
                  "WHERE delist_date IS NULL AND (due_date IS NULL OR due_date>'{}')".format(end_date.strftime('%Y%m%d'))
            # df = pd.read_sql(sql, con).dropna(how='all')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()

            df = pd.DataFrame(list(data), columns=['ts_code', 'fund_type', 'management'])
            manager_info = get_manager(invest_type)

            df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
            df = pd.merge(df, manager_info, how="left", on='fund_id')
        else:
李宗熹's avatar
李宗熹 committed
171

李宗熹's avatar
李宗熹 committed
172 173 174 175 176 177 178 179 180 181 182
            sql = "SELECT id, substrategy FROM fund_info WHERE delete_tag=0 " \
                  "AND substrategy!=-1"
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['id', 'substrategy'])
            # df = pd.read_sql(sql, con).dropna(how='all')

            df.rename({'id': 'fund_id'}, axis=1, inplace=True)
            manager_info = get_manager(invest_type)
            df = pd.merge(df, manager_info, how="inner", on='fund_id')
        return df
李宗熹's avatar
李宗熹 committed
183 184


李宗熹's avatar
李宗熹 committed
185
def resample(df, trading_cal, freq, simple_flag=True):
李宗熹's avatar
李宗熹 committed
186 187 188 189 190 191 192 193 194 195 196 197 198
    """对基金净值表进行粒度不同的重采样,并剔除不在交易日中的结果

    Args:
        df ([DataFrame]): [原始基金净值表]
        trading_cal ([DataFrame]): [上交所交易日表]
        freq ([int]): [重采样频率: 1:工作日,2:周, 3:月, 4:半月, 5:季度]

    Returns:
        [DataFrame]: [重采样后剔除不在交易日历中的净值表和交易日历以净值日期为索引的合表]
    """
    freq_dict = {250: 'B', 52: 'W-FRI', 12: 'M', 24: 'SM', 3: 'Q'}
    resample_freq = freq_dict[freq]
    # 按采样频率进行重采样并进行净值的前向填充
李宗熹's avatar
李宗熹 committed
199 200 201 202 203 204 205
    df = df.resample(rule=resample_freq, closed='right').ffill()

    # 计算年化指标时简化重采样过程
    if simple_flag and freq == 250:
        return pd.merge(df, trading_cal, how='inner', left_index=True, right_index=True)
    elif simple_flag and freq != 250:
        return df
李宗熹's avatar
李宗熹 committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    # 根据采样频率确定最大日期偏移量(保证偏移后的日期与重采样的日期在同一周,同一月,同一季度等)
    timeoffset_dict = {250: 1, 52: 5, 12: 30, 24: 15, 3: 120}
    timeoffsetmax = timeoffset_dict[freq]

    # Dataframe不允许直接修改index,新建一份index的复制并转为list
    new_index = list(df.index)
    # 遍历重采样后的日期
    for idx, date in enumerate(df.index):
        # 如果重采样后的日期不在交易日历中
        if date not in trading_cal['end_date']:
            # 对重采样后的日期进行偏移
            for time_offset in range(1, timeoffsetmax):
                # 如果偏移后的日期在交易日历中,保留偏移后的日期
                if date - datetime.timedelta(days=time_offset) in trading_cal['end_date']:
                    new_index[idx] = date - datetime.timedelta(days=time_offset)
                    # 任意一天满足立即退出循环
                    break

    # 更改净值表的日期索引为重采样后且在交易日内的日期
    df.index = pd.Series(new_index)
    return pd.merge(df, trading_cal, how='inner', left_index=True, right_index=True)


def z_score(annual_return_rank, downside_risk_rank, max_drawdown_rank, sharp_ratio_rank):
    return 25 * annual_return_rank + 25 * downside_risk_rank + 25 * max_drawdown_rank + 25 * sharp_ratio_rank


def cal_date(date, period_type, period):
    year, month, day = map(int, date.strftime('%Y-%m-%d').split('-'))
    if period_type == 'Y':
        cal_year = year - period
        return datetime.datetime(cal_year, month, day)
    elif period_type == 'm':
        cal_month = month - period
        if cal_month > 0:
            return datetime.datetime(year, cal_month, day)
        else:
            return datetime.datetime(year - 1, cal_month + 12, day)
    elif period_type == 'd':
        return date - datetime.timedelta(days=period)


def metric_rank(df):
李宗熹's avatar
李宗熹 committed
250
    for metric in ['annual_return', 'downside_risk', 'max_drawdown', 'sharp_ratio']:
李宗熹's avatar
李宗熹 committed
251 252 253 254
        if metric in ['downside_risk', 'max_drawdown']:
            ascending = False
        else:
            ascending = True
李宗熹's avatar
李宗熹 committed
255
        df['{}_rank'.format(metric)] = df.groupby(['substrategy'])[metric].rank(ascending=ascending, pct=True)
李宗熹's avatar
李宗熹 committed
256 257 258
    return df


李宗熹's avatar
李宗熹 committed
259 260 261 262 263
def fund_rank(start_date, end_date, invest_type='private'):
    fund_info = get_fund_info(end_date, invest_type=invest_type)

    group = fund_info.groupby('substrategy')
    grouped_fund = group['fund_id'].unique()
李宗熹's avatar
李宗熹 committed
264

李宗熹's avatar
李宗熹 committed
265
    trading_cal = get_trade_cal()
李宗熹's avatar
李宗熹 committed
266

李宗熹's avatar
李宗熹 committed
267 268
    metric_df = pd.DataFrame(columns=('fund_id', 'range_return', 'annual_return', 'max_drawdown', 'sharp_ratio',
                                      'volatility', 'sortino_ratio', 'downside_risk', 'substrategy'))
李宗熹's avatar
李宗熹 committed
269 270

    skipped_funds = []
李宗熹's avatar
李宗熹 committed
271 272
    for substrategy in grouped_fund.index:
        for fund in grouped_fund[substrategy]:
李宗熹's avatar
李宗熹 committed
273

李宗熹's avatar
李宗熹 committed
274
            df = get_nav(fund, start_date, rollback=False, invest_type=invest_type)
李宗熹's avatar
李宗熹 committed
275 276 277 278

            try:
                if df.index[-1] - df.index[0] < 0.6 * (end_date - start_date):
                    skipped_funds.append(fund)
李宗熹's avatar
李宗熹 committed
279 280
                    logging.log(logging.INFO, 'Skipped {}'.format(fund))
                    continue
李宗熹's avatar
李宗熹 committed
281 282
                n = get_frequency(df)
            except Exception as e:
李宗熹's avatar
李宗熹 committed
283
                # logging.log(logging.ERROR, repr(e))
李宗熹's avatar
李宗熹 committed
284 285 286 287
                logging.log(logging.INFO, 'Skipped {}'.format(fund))
                continue

            df = resample(df, trading_cal, n)
李宗熹's avatar
李宗熹 committed
288 289 290 291 292

            try:
                _ = get_frequency(df)
            except ValueError:
                continue
李宗熹's avatar
李宗熹 committed
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

            logging.log(logging.INFO, "Dealing with {}".format(fund))
            net_worth = df['adj_nav'].astype(float)

            end_df, begin_df = net_worth.values[-1], net_worth.values[0]

            sim_return = simple_return(net_worth)
            ex_return = excess_return(sim_return, bank_rate=0.015, n=n)
            drawdown = float(max_drawdown(net_worth)[0])
            shp_ratio = sharpe_ratio(ex_return, sim_return, n)
            rng_return = float(range_return(end_df, begin_df))
            ann_return = annual_return(rng_return, net_worth, n)
            vol = volatility(sim_return, n)
            down_risk = downside_risk(sim_return, bank_rate=0.015, n=n)
            sor_ratio = sortino_ratio(ex_return, down_risk, n)

李宗熹's avatar
李宗熹 committed
309 310
            manager = fund_info[fund_info['fund_id'] == fund]['fund_manager_id'].values
            # management = fund_info[fund_info['fund_id'] == fund]['management'].values
李宗熹's avatar
李宗熹 committed
311 312

            row = pd.Series([fund, rng_return, ann_return, drawdown, shp_ratio,
李宗熹's avatar
李宗熹 committed
313 314
                             vol, sor_ratio, down_risk, substrategy, manager],
                            index=['fund_id', 'range_return', 'annual_return', 'max_drawdown',
李宗熹's avatar
李宗熹 committed
315
                                   'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
李宗熹's avatar
李宗熹 committed
316
                                   'substrategy', 'manager'])
李宗熹's avatar
李宗熹 committed
317
            metric_df = metric_df.append(row, ignore_index=True)
李宗熹's avatar
李宗熹 committed
318
    metric_df.set_index('fund_id', inplace=True)
李宗熹's avatar
李宗熹 committed
319 320 321 322 323 324 325 326 327 328 329 330

    df = metric_rank(metric_df)
    df['z_score'] = z_score(df['annual_return_rank'],
                            df['downside_risk_rank'],
                            df['max_drawdown_rank'],
                            df['sharp_ratio_rank'])
    return df


if __name__ == '__main__':
    end_date = datetime.datetime.now() - datetime.timedelta(days=1)
    start_date = cal_date(end_date, 'Y', 1)
李宗熹's avatar
李宗熹 committed
331 332 333 334
    fund_rank = fund_rank(start_date, end_date, False)
    # fund_rank.to_csv("fund_rank.csv", encoding='gbk')
    # df = pd.read_csv('fund_rank.csv')
    # df.to_sql("fund_rank", con, if_exists='replace')
李宗熹's avatar
李宗熹 committed
335
    # con.close()