data_service_v2_1.py 40.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/18 19:12
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : data_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sqlalchemy import and_
import tushare as ts
import datetime
import math
from decimal import Decimal
from app.api.engine import tamp_user_engine, tamp_product_engine, TAMP_SQL, tamp_fund_engine, tamp_diagnose_app_engine
赵杰's avatar
赵杰 committed
17
from app.service.portfolio_diagnose import get_fund_substrategy
18 19 20 21


# from app.model.tamp_user_models import CustomerOrder, CustomerInfo
# from app.model.tamp_product_models import FundInfo
赵杰's avatar
赵杰 committed
22
from app.utils.fund_rank import get_frequency, get_trade_cal
23 24 25 26 27 28 29 30 31 32


class UserCustomerDataAdaptor:
    user_id = ""
    customer_id = ""
    customer_real_name = ""
    month_date = ""
    end_date = ""
    group_data = {}
    trade_cal_date = None
33 34
    all_fund_id_list = None
    all_fund_type_dict = None
35 36 37
    all_fund_distribution = {}
    all_fund_performance = {}

赵杰's avatar
赵杰 committed
38
    def __init__(self, user_id, customer_id, end_date=str(datetime.datetime.now()), index_id="IN0000007M"):
39 40 41
        self.user_id = user_id
        self.customer_id = customer_id
        self.compare_index_id = index_id
赵杰's avatar
赵杰 committed
42
        self.valueSex = ''
43
        p_end_date = pd.to_datetime(end_date).date()
44
        # p_end_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1) - datetime.timedelta(days=1)
45
        self.end_date = pd.to_datetime(str(p_end_date))
赵杰's avatar
赵杰 committed
46
        # self.end_date = pd.to_datetime("2021-01-29")
47 48
        p_start_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1)
        self.month_start_date = p_start_date
赵杰's avatar
赵杰 committed
49
        # self.month_start_date = pd.to_datetime("2020-12-01")
50 51 52 53 54 55 56 57
        self.user_customer_order_df = self.get_user_customer_order_data()
        self.fund_nav_total, self.fund_cnav_total = self.get_customer_fund_nav_data()
        self.index_df = self.get_customer_index_nav_data()
        self.total_customer_order_cnav_df = self.total_combine_data()
        self.group_operate()

    @staticmethod
    def get_trade_cal(start_date, end_date):
赵杰's avatar
赵杰 committed
58 59 60 61 62 63 64 65 66 67
        try:
            df = get_trade_cal()
            df = df[df["cal_date"] >= start_date]
            df.drop(['end_date'], axis=1, inplace=True)
            df.rename(columns={'cal_date': 'end_date'}, inplace=True)
            df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
            return df
        except:
            pass

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
        df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))

        return df

    # 获取理财师下该用户所有订单列表
    def get_user_customer_order_data(self):

        with TAMP_SQL(tamp_fund_engine) as tamp_fund, TAMP_SQL(tamp_product_engine) as tamp_product, TAMP_SQL(tamp_diagnose_app_engine) as tamp_diagnose_app:
            tamp_diagnose_app_session = tamp_diagnose_app.session
            tamp_product_session = tamp_product.session
            tamp_fund_session = tamp_fund.session
87
            sql_user = """select f1.fund_id, f2.realname,f3.customer_name,f3.valueSex,f1.type,f1.order_type,f1.pay_date,f1.subscription_fee,f1.confirm_share_date,f1.confirm_share,f1.confirm_amount,f1.nav,f1.folio_name, f1.comefrom from tamp_diagnose_app.customer_order_view f1, tamp_user.user_info f2,tamp_diagnose_app.customer_view f3   where f2.id=f1.user_id and f3.id=f1.customer_id  and f1.delete_tag=0 and user_id='{}' and customer_id='{}'""".format(self.user_id, self.customer_id)
88 89
            cur = tamp_diagnose_app_session.execute(sql_user)
            data = cur.fetchall()
赵杰's avatar
赵杰 committed
90
            order_df = pd.DataFrame(list(data), columns=['fund_id', 'username', 'customer_name', 'valueSex', 'type', 'order_type', 'pay_date',
91
                                                         'subscription_fee', 'confirm_share_date', 'confirm_share',
92
                                                         'confirm_amount', 'nav', 'folio_name', 'comefrom'])
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            cur_fund_id = list(order_df["fund_id"].unique())
            fund_list_str = str(cur_fund_id).replace("[", "(").replace("]", ")")

            sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
            cur = tamp_product_session.execute(sql_product)
            data = cur.fetchall()
            product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])

            if len(cur_fund_id) > 0:
                sql_fund = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info` where  `id` in {}".format(fund_list_str)
                cur = tamp_fund_session.execute(sql_fund)
                data = cur.fetchall()
                fund_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])

                if len(fund_df) > 0:
                    product_df = product_df.append(fund_df)
                    product_df = product_df.drop_duplicates("fund_id")
110 111 112 113 114 115 116 117 118 119 120 121 122 123
            fund_type3 = order_df[order_df["type"] == 3]
            if len(fund_type3) > 0:
                type3_fund_id = list(fund_type3["fund_id"].unique())
                fund_list_str_3 = str(type3_fund_id).replace("[", "(").replace("]", ")")
                sql_fund_3 = "select distinct `id`, `fund_name`, `substrategy` from `ifa_imported_fund_info` where  `id` in {}".format(
                    fund_list_str_3)
                cur = tamp_fund_session.execute(sql_fund_3)
                data = cur.fetchall()
                fund_df_3 = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'substrategy'])
                fund_df_3["freq"] = 1

                if len(fund_df_3) > 0:
                    product_df = product_df.append(fund_df_3)
                    product_df = product_df.drop_duplicates("fund_id")
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138
            fund_type0 = order_df[order_df["type"] == 0]
            if len(fund_type0) > 0:
                type0_fund_id = list(fund_type0["fund_id"].unique())
                fund_list_str_0 = str(type0_fund_id).replace("[", "(").replace("]", ")")
                sql_fund_0 = "select distinct `id`, `fund_short_name`, `substrategy` from `tx_fund_info` where  `id` in {}".format(
                    fund_list_str_0)
                cur = tamp_fund_session.execute(sql_fund_0)
                data = cur.fetchall()
                fund_df_0 = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'substrategy'])
                fund_df_0["freq"] = 1

                if len(fund_df_0) > 0:
                    product_df = product_df.append(fund_df_0)
                    product_df = product_df.drop_duplicates("fund_id")
139
            user_customer_order_df = order_df.set_index('fund_id').join(product_df.set_index('fund_id')).reset_index()
赵杰's avatar
赵杰 committed
140
            user_customer_order_df["substrategy"] = user_customer_order_df.apply(lambda x: get_fund_substrategy(x["fund_id"], x["type"]), axis=1)
赵杰's avatar
赵杰 committed
141
            user_customer_order_df["confirm_share_date"] = user_customer_order_df["confirm_share_date"].apply(lambda x: pd.to_datetime(x.date()))
142 143
            self.customer_real_name = user_customer_order_df["customer_name"].values[0]
            self.ifa_real_name = user_customer_order_df["username"].values[0]
赵杰's avatar
赵杰 committed
144
            self.valueSex = user_customer_order_df["valueSex"].values[0]
145
            user_customer_order_df = user_customer_order_df[user_customer_order_df["confirm_share_date"] <= self.end_date]
赵杰's avatar
赵杰 committed
146
            user_customer_order_df["confirm_amount"] = user_customer_order_df["confirm_amount"] - user_customer_order_df["subscription_fee"]
147
            user_customer_order_df.sort_values(by="confirm_share_date", inplace=True)
赵杰's avatar
赵杰 committed
148
            user_customer_order_df.index = pd.Series(range(len(user_customer_order_df)))
149 150 151 152
            user_customer_order_df["original_confirm_share"] = user_customer_order_df["confirm_share"]
            user_customer_order_df["divident_share"] = user_customer_order_df["confirm_share"]
            user_customer_order_df["reduce_share"] = user_customer_order_df["confirm_share"]
            user_customer_order_df["coefficient"] = Decimal(1.0)
赵杰's avatar
赵杰 committed
153

154 155 156 157 158 159 160 161 162 163 164 165
            # 内部订单
            inter_df = user_customer_order_df[user_customer_order_df["comefrom"] == "inter"]
            inter_order_df = self.reduce_inter_order(inter_df)

            # 外部订单
            outside_df = user_customer_order_df[user_customer_order_df["comefrom"] == "app"]
            outside_order_df = self.reduce_outside_order(outside_df)
            # outside_order_df["comefrom"] = "app"
            # outside_order_df = outside_order_df[outside_order_df["fund_id"] == "HF00005AFK"]

            user_customer_order_df = pd.concat([inter_order_df, outside_order_df])

赵杰's avatar
赵杰 committed
166
            user_customer_order_df = user_customer_order_df[((user_customer_order_df["order_type"] == 1)|(user_customer_order_df["order_type"] == 4))&(user_customer_order_df["confirm_share"] > 0)]
167
            user_customer_order_df.index = pd.Series(range(len(user_customer_order_df)))
赵杰's avatar
赵杰 committed
168
            self.start_date = user_customer_order_df["confirm_share_date"].min()
169 170
            return user_customer_order_df

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    # 核减内部订单
    def reduce_inter_order(self, order_df):
        inter_order_df = order_df.copy()
        inter_order_df.sort_values(by="confirm_share_date", inplace=True)

        def reduce_order(fund_order, d_fund_id, d_date, d_nav):
            """
            再平衡分红后单子的份额数量,对分红前的单子进行拆分
            :param fund_order: 订单dataframe
            :param d_date: 分红订单日期
            :param d_nav: 分红后单位净值
            :return:
            """
            for _index, _row in fund_order.iterrows():
                if _row["confirm_share_date"] > d_date:
                    break
                if _row["order_type"] == 1 and _row["fund_id"] == d_fund_id and _row["nav"] > d_nav:
                    coefficient = _row["nav"] / d_nav
赵杰's avatar
赵杰 committed
189
                    fund_order.loc[_index, "coefficient"] = coefficient * _row["coefficient"]
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                    fund_order.loc[_index, "divident_share"] = _row["confirm_share"] * coefficient

            return fund_order

        for index, row in inter_order_df.iterrows():
            if row["order_type"] == 4:
                dividend_date = row["confirm_share_date"]
                dividend_nav = row["nav"]
                reduce_order(inter_order_df, row["fund_id"], dividend_date, dividend_nav)
                continue
            if row["order_type"] == 2:
                need_less_share = row["confirm_share"]
                for index_ori, row_ori in inter_order_df.iterrows():
                    if index_ori >= index:
                        break
赵杰's avatar
赵杰 committed
205 206 207 208
                    if row["fund_id"] == row_ori["fund_id"] and (row_ori["order_type"] == 1 or row_ori["order_type"] == 4):
                        ori_share = row_ori["original_confirm_share"]
                        div_share = row_ori["divident_share"]
                        if need_less_share >= div_share:
209 210 211
                            need_less_share -= ori_share
                            inter_order_df.loc[index_ori, "divident_share"] = 0
                        else:
赵杰's avatar
赵杰 committed
212 213
                            stay_share = row_ori["divident_share"] - need_less_share
                            inter_order_df.loc[index_ori, "divident_share"] = stay_share if stay_share > 0.01 else 0
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
                            need_less_share = 0
                        if need_less_share <= 0:
                            break
        inter_order_df["reduce_share"] = inter_order_df["divident_share"] / inter_order_df["coefficient"]
        inter_order_df["confirm_share"] = inter_order_df["reduce_share"]
        return inter_order_df

    # 核减外部订单
    def reduce_outside_order(self, order_df):
        outside_order_df = order_df.copy()
        for index, row in outside_order_df.iterrows():
            if row["order_type"] == 2:
                need_less_share = row["confirm_share"]
                for index_ori, row_ori in outside_order_df.iterrows():
                    if index_ori >= index:
                        break
                    if row["fund_id"] == row_ori["fund_id"] and row_ori["order_type"] == 1:
                        ori_share = row_ori["reduce_share"]
                        if need_less_share >= ori_share:
                            need_less_share -= ori_share
                            outside_order_df.loc[index_ori, "reduce_share"] = 0
                        else:
                            outside_order_df.loc[index_ori, "reduce_share"] = row_ori["reduce_share"] - need_less_share
                            need_less_share = 0
                        if need_less_share <= 0:
                            break
        outside_order_df["confirm_share"] = outside_order_df["reduce_share"]
        return outside_order_df

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    # 获取客户持有的基金净值数据
    def get_customer_fund_nav_data(self):
        with TAMP_SQL(tamp_product_engine) as tamp_product, TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_product_session = tamp_product.session
            tamp_fund_session = tamp_fund.session
            now_date = datetime.datetime.now().strftime("%Y%m%d")
            trade_date_df = self.get_trade_cal("20000101", now_date)
            self.trade_cal_date = trade_date_df
            all_fund_nav = pd.DataFrame(index=trade_date_df["datetime"])
            all_fund_cnav = pd.DataFrame(index=trade_date_df["datetime"])

            temp_fund_id = []
            # for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
            for index, row in self.user_customer_order_df.iterrows():
                cur_fund_id = row["fund_id"]
                if cur_fund_id in temp_fund_id:
                    continue
                else:
                    temp_fund_id.append(cur_fund_id)
                fund_type = row["type"]
                # 对应基金净值
                if fund_type == 0:
265
                    sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `tx_fund_nav` where `fund_id`='{}' and `delete_tag`=0 order by `price_date` ASC""".format(cur_fund_id)
266 267
                    cur = tamp_fund_session.execute(sql)
                elif fund_type == 1:
268
                    sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}' and `delete_tag`=0 order by `price_date` ASC""".format(
269 270 271
                        cur_fund_id)
                    cur = tamp_fund_session.execute(sql)
                elif fund_type == 2:
272
                    sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}' and `delete_tag`=0 order by `price_date` ASC""".format(
273 274
                        cur_fund_id)
                    cur = tamp_product_session.execute(sql)
275
                elif fund_type == 3:
276
                    sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `ifa_imported_fund_nav` where `fund_id`='{}'  and `delete_tag`=0 order by `price_date` ASC""".format(
277 278
                        cur_fund_id)
                    cur = tamp_fund_session.execute(sql)
279 280 281 282
                data = cur.fetchall()
                cur_fund_nav_df = pd.DataFrame(list(data), columns=['price_date', 'nav', 'cnav'])

                # # 对应基金分红
283
                dis_sql = """select distinct `distribute_date`, `distribution` from `fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
284
                    cur_fund_id)
285 286 287 288 289 290
                if fund_type == 0:
                    dis_sql = """select distinct `distribute_date`, `distribution` from `tx_fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
                    cur_fund_id)
                    cur = tamp_fund_session.execute(dis_sql)
                else:
                    cur = tamp_product_session.execute(dis_sql)
291 292 293 294 295
                data = cur.fetchall()
                cur_fund_distribution_df = pd.DataFrame(list(data), columns=['price_date', 'distribution'])
                self.all_fund_distribution[cur_fund_id] = cur_fund_distribution_df

                # 对应基金performance数据
296
                per_sql = """select distinct `price_date`, `ret_1w`, `ret_cum_1m`, `ret_cum_6m`, `ret_cum_1y`, `ret_cum_ytd`, `ret_cum_incep` from `fund_performance` where `fund_id`='{}' order by `price_date` ASC""".format(
297
                    cur_fund_id)
298 299 300 301 302 303 304
                if fund_type == 0:
                    per_sql = """select distinct `price_date`, `ret_1w`, `ret_1m`, `ret_6m`, `ret_1y`, `ret_ytd`, `ret_incep` from `tx_fund_count` where `fund_id`='{}' order by `price_date` ASC""".format(
                        cur_fund_id)
                    cur = tamp_fund_session.execute(per_sql)
                elif fund_type == 3:
                    per_sql = """select distinct `price_date`, `ret_1w`, `ret_1m`, `ret_6m`, `ret_1y`, `ret_ytd`, `ret_incep` from `ifa_imported_fund_count` where `fund_id`='{}' order by `price_date` ASC""".format(
                        cur_fund_id)
赵杰's avatar
赵杰 committed
305
                    cur = tamp_fund_session.execute(per_sql)
306 307
                else:
                    cur = tamp_product_session.execute(per_sql)
308 309 310
                data = cur.fetchall()
                cur_fund_performance_df = pd.DataFrame(list(data),
                columns=['price_date', 'ret_1w', 'ret_cum_1m', 'ret_cum_6m', 'ret_cum_1y', 'ret_cum_ytd', 'ret_cum_incep'])
赵杰's avatar
赵杰 committed
311 312
                cur_fund_performance_df = cur_fund_performance_df[
                    cur_fund_performance_df["price_date"] <= self.end_date.date()]
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                self.all_fund_performance[cur_fund_id] = cur_fund_performance_df

                cur_fund_nav_df["price_date"] = pd.to_datetime(cur_fund_nav_df["price_date"])
                cur_fund_nav_df.drop_duplicates(subset="price_date", keep='first', inplace=True)
                cur_fund_nav_df.set_index("price_date", inplace=True)
                cur_fund_nav_df = cur_fund_nav_df[cur_fund_nav_df.index.isin(all_fund_nav.index)]

                if math.isnan(row["freq"]):
                    try:
                        freq = get_frequency(cur_fund_nav_df)
                    except:
                        freq = 250
                    timeoffset_dict = {250: 1, 52: 5, 12: 30, 24: 15, 3: 120}
                    self.user_customer_order_df.loc[index, "freq"] = timeoffset_dict[freq]

                all_fund_nav[cur_fund_id] = cur_fund_nav_df["nav"]
                all_fund_cnav[cur_fund_id] = cur_fund_nav_df["cnav"]

            all_fund_nav = all_fund_nav[all_fund_nav.index <= self.end_date]
            all_fund_cnav = all_fund_cnav[all_fund_cnav.index <= self.end_date]
            # for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
            #     all_fund_nav[cur_fund_id][all_fund_nav[cur_fund_id].apply(lambda x: math.isnan(x))]=np.nan
            #     all_fund_cnav[cur_fund_id][all_fund_cnav[cur_fund_id].apply(lambda x: math.isnan(x))] = np.nan
            self.last_nav_date = str(all_fund_cnav.dropna(how="all").index.values[-1])[:10]
            return all_fund_nav, all_fund_cnav

    # 获取客户对比指数净值数据
    def get_customer_index_nav_data(self, index_id="IN0000007M"):
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            sql = "select distinct price_date,close from fund_market_indexes where index_id='{}'  order by price_date ASC".format(index_id)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            index_df = pd.DataFrame(list(data), columns=['price_date', 'index'])
            index_df["price_date"] = pd.to_datetime(index_df["price_date"])
            index_df.set_index("price_date", inplace=True)
            self.fund_cnav_total["index"] = index_df["index"]
350
            self.fund_nav_total["index"] = index_df["index"]
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            self.index_df = index_df

            return index_df

    # 分组合计算
    def group_operate(self):
        for folio in self.user_customer_order_df["folio_name"].unique():
            cur_folio_order_df = self.user_customer_order_df[self.user_customer_order_df["folio_name"] == folio]
            fund_id_list = list(self.user_customer_order_df["fund_id"].unique())
            cur_folio_nav_df = self.fund_nav_total[fund_id_list]
            # fund_id_list.append("index")
            cur_folio_cnav_df = self.fund_cnav_total[fund_id_list]
            self.signal_folio_operate(folio, cur_folio_order_df, cur_folio_nav_df, cur_folio_cnav_df)
            continue

    # 单个组合数据操作
    def signal_folio_operate(self, p_folio, p_order_df, p_nav_df, p_cnav_df):
        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())

370 371 372 373 374 375
        p_order_df = p_order_df[(p_order_df["order_type"] == 1) | (p_order_df["order_type"] == 4)]
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
        nav_df = p_nav_df[p_nav_df.index >= start_date].copy()
376 377 378
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
379 380 381
        self.all_fund_id_list = p_fund_id_list
        self.all_fund_type_dict = {values["fund_id"]: values["type"] for values in
                                   p_order_df[["fund_id", "type"]].drop_duplicates().to_dict(orient='records')}
382 383 384 385 386
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

387 388
        #  处理累积净值
        p_outside_order_df = p_order_df[p_order_df["comefrom"] == "app"]
389 390 391 392 393 394
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(p_nav_df.loc[confirm_share_date, cur_fund_id]):
赵杰's avatar
赵杰 committed
395 396
                last_nav_data = p_nav_df[p_nav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
414
        for index, row in p_outside_order_df.iterrows():
415 416
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
417
            if cur_fund_id + "_amount" not in cnav_df:
418 419 420 421 422 423 424
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
                cnav_df[cur_fund_id + "_profit"] = profit
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
425
                cnav_df[cur_fund_id + "_amount"] = 0
426 427 428 429
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

            # buy
430 431 432
            if row['order_type'] == 1 or row['order_type'] == 4:
                # if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["nav"] * row["confirm_share"]
433 434
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]

435 436 437 438 439 440 441
        #  处理单位净值
        nav_df = nav_df.dropna(axis=0, how="all").fillna(method='ffill')
        p_inter_order_df = p_order_df[p_order_df["comefrom"] == "inter"]
        for index, row in p_inter_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            confirm_share_nav = row["nav"]
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            nav_df.loc[confirm_share_date, cur_fund_id] = confirm_share_nav

        # 内部订单是用单位净值算收益
        nav_df = nav_df.fillna(method='ffill')
        actual_share_dict = {}
        for index, row in p_inter_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in nav_df:
                nav_df[cur_fund_id + "_profit"] = Decimal(0)
                nav_df[cur_fund_id + "_profit_ratio"] = Decimal(0)
                nav_df[cur_fund_id + "_amount"] = 0
                nav_df[cur_fund_id + "_earn"] = 0
                nav_df[cur_fund_id + "_share"] = 0
                nav_df[cur_fund_id + "_reduce_share"] = 0

            # buy
            if row['order_type'] == 1:
                cur_fund_share = actual_share_dict.get(cur_fund_id, 0)
赵杰's avatar
赵杰 committed
462
                cur_fund_share += row["original_confirm_share"] - (row["original_confirm_share"] * row["coefficient"] - row["divident_share"])
463
                nav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["reduce_share"] * row["nav"]
赵杰's avatar
赵杰 committed
464
                # nav_df.loc[confirm_share_date:, cur_fund_id + "_share"] = cur_fund_share
465 466 467 468 469 470 471
                nav_df.loc[confirm_share_date:, cur_fund_id + "_reduce_share"] += row["reduce_share"]
                actual_share_dict[cur_fund_id] = cur_fund_share

            if row['order_type'] == 4:
                cur_fund_share = actual_share_dict.get(cur_fund_id, 0)
                # cur_fund_share += row["reduce_share"]
                # nav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] = cur_fund_share * row["nav"]
赵杰's avatar
赵杰 committed
472
                nav_df.loc[confirm_share_date:, cur_fund_id + "_share"] = cur_fund_share + row["reduce_share"]
473 474 475 476 477 478
                nav_df.loc[confirm_share_date:, cur_fund_id + "_reduce_share"] = cur_fund_share + row["reduce_share"]
                # actual_share_dict[cur_fund_id] = cur_fund_share

        for p_fund_id_ in p_outside_order_df["fund_id"].unique():
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(
                lambda x: float(x)).fillna(0)
479
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
480 481
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + \
                                                  cnav_df[p_fund_id_ + "_amount"]
赵杰's avatar
赵杰 committed
482 483

        # 内部订单
484 485 486 487 488 489 490 491 492 493 494 495
        for p_fund_id_ in p_inter_order_df["fund_id"].unique():
            nav_df[p_fund_id_ + "_net_amount"] = (nav_df[p_fund_id_] * nav_df[p_fund_id_ + "_reduce_share"]).apply(
                lambda x: float(x)).fillna(0)
            nav_df[p_fund_id_ + "_cum_earn"] = nav_df[p_fund_id_ + "_net_amount"] - nav_df[
                p_fund_id_ + "_amount"].apply(lambda x: float(x))
            nav_df[p_fund_id_ + "_earn"] = nav_df[p_fund_id_ + "_cum_earn"].diff().fillna(0)
            nav_df[p_fund_id_ + "_profit_ratio"] = (
                        nav_df[p_fund_id_ + "_earn"] / nav_df[p_fund_id_ + "_amount"].apply(lambda x: float(x))).apply(
                lambda x: Decimal(x))
            nav_df[p_fund_id_ + "_net_amount"] = nav_df[p_fund_id_ + "_net_amount"].apply(lambda x: Decimal(x))
            nav_df[p_fund_id_ + "_profit_ratio"] = nav_df[p_fund_id_ + "_profit_ratio"].apply(
                lambda x: Decimal(0) if math.isnan(x) else x)
赵杰's avatar
赵杰 committed
496
            nav_df[p_fund_id_ + "_share"] = nav_df[p_fund_id_ + "_reduce_share"]
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

        finall_cnav_df = cnav_df.copy()
        all_nav_df = p_nav_df[p_nav_df.index >= start_date].copy().dropna(axis=0, how="all").fillna(method='ffill')
        for p_fund_id_ in p_order_df["fund_id"].unique():
            finall_cnav_df[p_fund_id_ + "_nav"] = all_nav_df[p_fund_id_]
            if p_fund_id_ + "_profit_ratio" not in finall_cnav_df.columns:
                finall_cnav_df[p_fund_id_ + "_profit_ratio"] = Decimal(0)
                finall_cnav_df[p_fund_id_ + "_amount"] = 0
                finall_cnav_df[p_fund_id_ + "_earn"] = 0
                finall_cnav_df[p_fund_id_ + "_share"] = 0
                finall_cnav_df[p_fund_id_ + "_net_amount"] = Decimal(0)
            # try:
            #     finall_cnav_df[p_fund_id_] = cnav_df[p_fund_id_]
            #     finall_cnav_df[p_fund_id_ + "_net_amount"] += cnav_df[p_fund_id_ + "_net_amount"]
            #     finall_cnav_df[p_fund_id_ + "_profit_ratio"] += cnav_df[p_fund_id_ + "_profit_ratio"]
            #     finall_cnav_df[p_fund_id_ + "_amount"] += cnav_df[p_fund_id_ + "_amount"]
            #     finall_cnav_df[p_fund_id_ + "_earn"] += cnav_df[p_fund_id_ + "_earn"]
            #     finall_cnav_df[p_fund_id_ + "_share"] += cnav_df[p_fund_id_ + "_share"]
            # except:
            #     pass
            try:
                finall_cnav_df[p_fund_id_ + "_nav"] = nav_df[p_fund_id_]
                finall_cnav_df[p_fund_id_ + "_net_amount"] += nav_df[p_fund_id_ + "_net_amount"]
                finall_cnav_df[p_fund_id_ + "_profit_ratio"] += nav_df[p_fund_id_ + "_profit_ratio"]
                finall_cnav_df[p_fund_id_ + "_amount"] += nav_df[p_fund_id_ + "_amount"]
                finall_cnav_df[p_fund_id_ + "_earn"] += nav_df[p_fund_id_ + "_earn"]
                finall_cnav_df[p_fund_id_ + "_share"] += nav_df[p_fund_id_ + "_share"]
            except:
                pass

        self.group_data[p_folio] = {"result_cnav_data": finall_cnav_df, "order_df": p_order_df}
528 529 530 531 532
        return cnav_df

    # 所有的数据操作
    def total_combine_data(self):

533 534
        p_order_df = self.user_customer_order_df[(self.user_customer_order_df["order_type"] == 1) |
                                                 (self.user_customer_order_df["order_type"] == 4)]
535 536 537 538
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
539
        nav_df = p_nav_df[p_nav_df.index >= start_date].copy()
540 541 542
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
543 544
        self.all_fund_id_list = p_fund_id_list
        self.all_fund_type_dict = {values["fund_id"]: values["type"] for values in p_order_df[["fund_id", "type"]].drop_duplicates().to_dict(orient='records')}
545 546 547 548 549
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

550 551
        #  处理累积净值
        p_outside_order_df = p_order_df[p_order_df["comefrom"] == "app"]
552 553 554 555 556 557
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(p_nav_df.loc[confirm_share_date, cur_fund_id]):
赵杰's avatar
赵杰 committed
558 559
                last_nav_data = p_nav_df[p_nav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index > confirm_share_date][cur_fund_id].dropna().head(1)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
577
        for index, row in p_outside_order_df.iterrows():
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in cnav_df:
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
                cnav_df[cur_fund_id + "_profit"] = profit
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                cnav_df[cur_fund_id + "_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

            # buy
593 594 595
            if row['order_type'] == 1 or row['order_type'] == 4:
                # if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["nav"] * row["confirm_share"]
596 597
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        #  处理单位净值
        nav_df = nav_df.dropna(axis=0, how="all").fillna(method='ffill')
        p_inter_order_df = p_order_df[p_order_df["comefrom"] == "inter"]
        for index, row in p_inter_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            confirm_share_nav = row["nav"]

            nav_df.loc[confirm_share_date, cur_fund_id] = confirm_share_nav

        # 内部订单是用单位净值算收益
        nav_df = nav_df.fillna(method='ffill')
        actual_share_dict = {}
        for index, row in p_inter_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in nav_df:

                nav_df[cur_fund_id + "_profit"] = Decimal(0)
                nav_df[cur_fund_id + "_profit_ratio"] = Decimal(0)
                nav_df[cur_fund_id + "_amount"] = 0
                nav_df[cur_fund_id + "_earn"] = 0
                nav_df[cur_fund_id + "_share"] = 0
                nav_df[cur_fund_id + "_reduce_share"] = 0

            # buy
            if row['order_type'] == 1:
                cur_fund_share = actual_share_dict.get(cur_fund_id, 0)
赵杰's avatar
赵杰 committed
626
                cur_fund_share += row["original_confirm_share"] - (row["original_confirm_share"] * row["coefficient"] - row["divident_share"])
627 628 629 630 631 632 633 634 635
                nav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["reduce_share"] * row["nav"]
                nav_df.loc[confirm_share_date:, cur_fund_id + "_share"] = cur_fund_share
                nav_df.loc[confirm_share_date:, cur_fund_id + "_reduce_share"] += row["reduce_share"]
                actual_share_dict[cur_fund_id] = cur_fund_share

            if row['order_type'] == 4:
                cur_fund_share = actual_share_dict.get(cur_fund_id, 0)
                # cur_fund_share += row["reduce_share"]
                # nav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] = cur_fund_share * row["nav"]
赵杰's avatar
赵杰 committed
636
                nav_df.loc[confirm_share_date:, cur_fund_id + "_share"] = cur_fund_share + row["reduce_share"]
637 638 639 640
                nav_df.loc[confirm_share_date:, cur_fund_id + "_reduce_share"] = cur_fund_share + row["reduce_share"]
                # actual_share_dict[cur_fund_id] = cur_fund_share

        for p_fund_id_ in p_outside_order_df["fund_id"].unique():
641 642 643
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        for p_fund_id_ in p_inter_order_df["fund_id"].unique():
            nav_df[p_fund_id_ + "_net_amount"] = (nav_df[p_fund_id_] * nav_df[p_fund_id_ + "_reduce_share"]).apply(lambda x: float(x)).fillna(0)
            nav_df[p_fund_id_ + "_cum_earn"] = nav_df[p_fund_id_ + "_net_amount"] - nav_df[p_fund_id_ + "_amount"].apply(lambda x: float(x))
            nav_df[p_fund_id_ + "_earn"] = nav_df[p_fund_id_ + "_cum_earn"].diff().fillna(0)
            nav_df[p_fund_id_ + "_profit_ratio"] = (nav_df[p_fund_id_ + "_earn"] / nav_df[p_fund_id_ + "_amount"].apply(lambda x: float(x))).apply(lambda x: Decimal(x))
            nav_df[p_fund_id_ + "_net_amount"] = nav_df[p_fund_id_ + "_net_amount"].apply(lambda x: Decimal(x))
            nav_df[p_fund_id_ + "_profit_ratio"] = nav_df[p_fund_id_ + "_profit_ratio"].apply(lambda x: Decimal(0) if math.isnan(x) else x)

        finall_cnav_df = cnav_df.copy()
        all_nav_df = p_nav_df[p_nav_df.index >= start_date].copy().dropna(axis=0, how="all").fillna(method='ffill')
        for p_fund_id_ in p_order_df["fund_id"].unique():
            finall_cnav_df[p_fund_id_ + "_nav"] = all_nav_df[p_fund_id_]
            if p_fund_id_ + "_profit_ratio" not in finall_cnav_df.columns:
                finall_cnav_df[p_fund_id_ + "_profit_ratio"] = Decimal(0)
                finall_cnav_df[p_fund_id_ + "_amount"] = 0
                finall_cnav_df[p_fund_id_ + "_earn"] = 0
                finall_cnav_df[p_fund_id_ + "_share"] = 0
                finall_cnav_df[p_fund_id_ + "_net_amount"] = Decimal(0)
            # try:
            #     finall_cnav_df[p_fund_id_] = cnav_df[p_fund_id_]
            #     finall_cnav_df[p_fund_id_ + "_net_amount"] += cnav_df[p_fund_id_ + "_net_amount"]
            #     finall_cnav_df[p_fund_id_ + "_profit_ratio"] += cnav_df[p_fund_id_ + "_profit_ratio"]
            #     finall_cnav_df[p_fund_id_ + "_amount"] += cnav_df[p_fund_id_ + "_amount"]
            #     finall_cnav_df[p_fund_id_ + "_earn"] += cnav_df[p_fund_id_ + "_earn"]
            #     finall_cnav_df[p_fund_id_ + "_share"] += cnav_df[p_fund_id_ + "_share"]
            # except:
            #     pass
            try:
                finall_cnav_df[p_fund_id_ + "_nav"] = nav_df[p_fund_id_]
                finall_cnav_df[p_fund_id_ + "_net_amount"] += nav_df[p_fund_id_ + "_net_amount"]
                finall_cnav_df[p_fund_id_ + "_profit_ratio"] += nav_df[p_fund_id_ + "_profit_ratio"]
                finall_cnav_df[p_fund_id_ + "_amount"] += nav_df[p_fund_id_ + "_amount"]
                finall_cnav_df[p_fund_id_ + "_earn"] += nav_df[p_fund_id_ + "_earn"]
                finall_cnav_df[p_fund_id_ + "_share"] += nav_df[p_fund_id_ + "_share"]
            except:
                pass

        return finall_cnav_df