jinjia2html_v2.py 17.8 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
import time
import uuid

from jinja2 import PackageLoader, Environment

from app.api.engine import work_dir, pdf_folder, template_folder
from app.service.portfolio_diagnose import PortfolioDiagnose
from app.service.result_service_v2 import UserCustomerResultAdaptor
import numpy as np
from concurrent import futures
import os

# 准备数据
from app.utils.draw import draw_month_return_chart, draw_contribution_chart, draw_combination_chart, \
    draw_old_combination_chart
from app.utils.html_to_pdf import html_to_pdf
from app.utils.radar_chart import gen_radar_chart


class DataIntegrate:
    def __init__(self, ifa_id='USER_INFO15914346866762', customer_id='202009281545001', pdf_name=str(uuid.uuid4()) + '.pdf'):
        self.user_customer = UserCustomerResultAdaptor(ifa_id, customer_id)
        self.customer_name = self.user_customer.customer_real_name
        self.pdf_name = pdf_name
        # 全部数据
        self.df = self.user_customer.calculate_total_data()
        # 组合结果数据
        self.d = self.user_customer.calculate_group_result_data()

        self.all_folio_result = {}
        # 分组合拼接结果数据
        self.get_group_result()

        # # 组合数据
        # self.group_result = self.d["default"]
        # self.get_portfolio_diagnose(self.group_result["fund_id_list"])
        # 投资总览
        self.get_summarize()
        # 月度回报
        self.get_month_return()
        # 月度回报表格
        self.get_month_table_return()

        # 渲染模版
        self.render_data()

    # 分组和计算个基点评以及新增基金等结果
    def get_group_result(self):
        for group_name, group_result in self.d.items():
            portfolio_diagnose = self.get_portfolio_diagnose(group_result["fund_id_list"], invest_amount=group_result["total_cost"])
            cur_group_portfolio_result = {}

            # 旧持仓组合点评
            self.comments_on_position_portfolio(portfolio_diagnose, group_name, cur_group_portfolio_result)
            # 贡献分解
            self.contribution_deco(group_result, cur_group_portfolio_result)
            # 目标与业绩
            self.objectives_performance(group_result, cur_group_portfolio_result)
            # 个基点评
            self.single_fund_comment(portfolio_diagnose, cur_group_portfolio_result)
            # 旧收益比较
            self.get_old_compare_pic(cur_group_portfolio_result)
            # 旧相关性
            self.get_old_correlation(portfolio_diagnose, cur_group_portfolio_result)
            # # 新增基金
            self.propose_fund(portfolio_diagnose, cur_group_portfolio_result)
            # # 新收益比较
            self.get_transfer_suggestions(portfolio_diagnose, group_name, cur_group_portfolio_result)
            # # 新相关性
            self.get_new_correlation(portfolio_diagnose, cur_group_portfolio_result)

            self.all_folio_result[group_name] = cur_group_portfolio_result

    def get_portfolio_diagnose(self, portfolio, client_type=1, invest_amount=10000000):
        portfolio_diagnose = PortfolioDiagnose(client_type=client_type, portfolio=portfolio, invest_amount=invest_amount)
        portfolio_diagnose.optimize()
        return portfolio_diagnose

    # 全部数据综述结果
    def get_summarize(self):
        """投资总览."""
        self.total_cost = round(self.df["total_cost"], 2)   # 投资成本
        self.now_yield = round((self.df['cumulative_return']-1)*100, 2)     # 成立以来累计收益率
        self.now_annualised_return = round(self.df["return_ratio_year"] * 100, 2)  # 年化收益率
        self.index_yield = round((self.df["index_result"]["return_ratio"]-1)*100, 2)    # 指数收益率
        self.now_withdrawal = round(self.df["max_drawdown"][0]*100, 2)  # 最大回撤
        self.index_withdrawal = round(self.df["index_result"]["max_drawdown"][0]*100, 2)    # 指数最大回撤
        self.now_month_income = int(self.df["cur_month_profit"])  # 本月收益
        self.month_rise = round(self.df["cur_month_profit_ratio"] * 100, 2)  # 本月涨幅
        self.year_totoal_rate_of_return = round(self.df["cur_year_profit_ratio"] * 100, 2)  # 今年累计收益率
        self.now_year_income = int(self.df["cur_year_profit"])  # 今年累计收益
        self.final_balance = int(self.df["total_cost"] + self.df["cumulative_profit"])  # 期末资产
        self.total_profit = int(self.df["cumulative_profit"])  # 累计盈利

    def get_month_return(self):
        """月度回报."""
        """组合月度及累计回报率曲线图"""
        xlabels, product_list, cumulative = self.user_customer.get_month_return_chart()
        self.monthly_return_performance_pic = draw_month_return_chart(xlabels, product_list, cumulative)

    def get_month_table_return(self):
        """月度盈亏和期末资产"""
        self.monthly_table_return = self.df["month_return_data_dict"]

    # 旧组合持仓点评,贡献分解数据
    def comments_on_position_portfolio(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """旧持仓组合点评. 旧贡献分解数据"""
        cur_group_portfolio_result["old_evaluation"], cur_group_portfolio_result["old_return_compare_data"],\
        cur_group_portfolio_result["old_indicator_compare"] = portfolio_diagnose.old_evaluation(folio, self.d, self.user_customer)

    def contribution_deco(self, group_result, cur_group_portfolio_result):
        """贡献分解."""
        g_data = group_result["contribution_decomposition"]
        cur_group_portfolio_result["contribution_decomposition"] = draw_contribution_chart(g_data['xlabels'], g_data['product_list'], g_data['cumulative'])

    def single_fund_comment(self, portfolio_diagnose, cur_group_portfolio_result):
        """个基点评."""
        single_fund_data_list = []
        portfolio_evaluation = portfolio_diagnose.old_portfolio_evaluation()
        radar_chart_data = portfolio_diagnose.single_fund_radar()
        with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
            res = executor.map(gen_radar_chart, radar_chart_data)
        res = list(res)
        for i in range(len(portfolio_evaluation)):
            if portfolio_evaluation[i]['status'] == '保留':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl">保留</div>'
            elif portfolio_evaluation[i]['status'] == '增仓':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl red">增仓</div>'
            elif portfolio_evaluation[i]['status'] == '换仓':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl green">换仓</div>'
            elif portfolio_evaluation[i]['status'] == '减仓':
                portfolio_evaluation[i]['status'] = '<div class="self_type fl green">减仓</div>'
            single_fund_data_list.append({
                'fund_name': portfolio_evaluation[i]['name'],
                'status': portfolio_evaluation[i]['status'],
                'evaluation': portfolio_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["single_fund_data_list"] = single_fund_data_list

    def get_old_compare_pic(self, cur_group_portfolio_result):
        """旧收益比较"""
        cur_group_portfolio_result["old_return_compare_pic"] = draw_old_combination_chart(cur_group_portfolio_result["old_return_compare_data"]["xlabels"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["origin_combination"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["index"])

    def get_transfer_suggestions(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """新收益比较,调仓建议"""
        cur_group_portfolio_result["suggestions_result"], cur_group_portfolio_result["suggestions_result_asset"], \
        cur_group_portfolio_result["return_compare_data"], \
        cur_group_portfolio_result["indicator_compare"], cur_group_portfolio_result["new_group_evaluation"] = portfolio_diagnose.new_evaluation(folio, self.d,
                                                                                                   self.user_customer)

        cur_group_portfolio_result["return_compare_pic"] = draw_combination_chart(cur_group_portfolio_result["return_compare_data"]["xlabels"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["new_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["origin_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["index"])

    def get_old_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """旧相关性分析."""
        old_correlation = portfolio_diagnose.old_correlation
        old_correlation_columns = old_correlation.columns.tolist()
        old_correlation_values = old_correlation.values.tolist()
        cur_group_portfolio_result["old_correlation"] = list(zip(range(1, len(old_correlation_columns)+1), old_correlation_columns, old_correlation_values))

    def get_new_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """新相关性分析."""
        new_correlation = portfolio_diagnose.new_correlation
        new_correlation_columns = new_correlation.columns.tolist()
        new_correlation_values = new_correlation.values.tolist()
        cur_group_portfolio_result["new_correlation"] = list(zip(range(1, len(new_correlation_columns)+1), new_correlation_columns, new_correlation_values))

    def propose_fund(self, portfolio_diagnose, cur_group_portfolio_result):
        """新增基金"""
        # 优化组合建议1 -- 新增基金
        propose_fund_data_list = []
        propose_fund_evaluation = portfolio_diagnose.propose_fund_evaluation()
        propose_radar_chart_data = portfolio_diagnose.propose_fund_radar()
        with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
            res = executor.map(gen_radar_chart, propose_radar_chart_data)
        res = list(res)
        for i in range(len(propose_fund_evaluation)):
            propose_fund_data_list.append({
                'fund_name': propose_fund_evaluation[i]['name'],
                'status': '增仓',
                'evaluation': propose_fund_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["propose_fund_data_list"] = propose_fund_data_list

    def objectives_performance(self, group_result, cur_group_portfolio_result):
        """目标与业绩"""

        cur_group_portfolio_result["totoal_rate_of_return"] = round((group_result['cumulative_return']-1)*100, 2)       # 成立以来累计收益率
        cur_group_portfolio_result["annualised_return"] = round(group_result["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["volatility"] = round(group_result["volatility"]*100, 2)
        cur_group_portfolio_result["max_withdrawal"] = round(group_result["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["sharpe_ratio"] = round(group_result["sharpe"], 2)
        cur_group_portfolio_result["cost_of_investment"] = round(group_result["total_cost"]/10000.0, 2)    # 投资成本
        cur_group_portfolio_result["index_section_return"] = round((group_result["index_result"]["return_ratio"]-1)*100, 2)
        cur_group_portfolio_result["index_annualised_return"] = round(group_result["index_result"]["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["index_volatility"] = round(group_result["index_result"]["volatility"]*100, 2)
        cur_group_portfolio_result["index_max_withdrawal"] = round(group_result["index_result"]["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["index_sharpe_ratio"] = round(group_result["index_result"]["sharpe"], 2)

        cur_group_portfolio_result["group_nav_info"] = group_result["group_nav_info"]
        cur_group_portfolio_result["group_hoding_info"] = group_result["group_hoding_info"]
        cur_group_portfolio_result["group_hoding_info_total"] = group_result["group_hoding_info_total"]


    def render_data(self):
        # 全部数据
        data = {
                # 封面 值为None不不显示,为block显示
                'box0': 'block',
                # 目录
                'box1': 'block',
                # 投资总览
                'box2': 'block',
                # 目标与业绩
                'box3': 'block',
                # 业绩的明细
                'box4': 'block',
                # 个基点评
                'box5': 'block',
                # 优化组合建议
                'box6': None,
                # 新增基金
                'box7': None,
                # 结尾
                'box8': 'block',
                'cover_back': template_folder + '/v2/img/cover-back.png',
                'logo': template_folder + '/v2/img/logo.png',
                'scene': template_folder + '/v2/img/scene.png',
                'team': template_folder + '/v2/img/team.png',
                # 全局数据
                'customer_name': self.customer_name,
                'year_month': self.user_customer.month_start_date.strftime("%Y-%m"),
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'latest_worth_day': self.user_customer.last_nav_date,
                'brand_name': '小飞象<br>工作室',
                'customer_old': 42,
                'customer_level': '平衡型',
                # 综述数据
                'now_allocation_amount': self.total_cost, 'now_yield': self.now_yield, 'index_yield': self.index_yield,
                'now_annualised_return': self.now_annualised_return,
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal, 'expected_withdrawal': 20,
                'now_year_income': self.now_year_income, 'now_month_income': self.now_month_income,
                'final_balance': self.final_balance, 'total_profit': self.total_profit,

                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'monthly_table_return': self.monthly_table_return,

                # 组合数据
                'all_folio_result': self.all_folio_result,



               # 'totoal_rate_of_return': self.totoal_rate_of_return,
                # 'annualised_return': self.annualised_return, 'cost_of_investment': self.cost_of_investment,
                #
                #
                # 'index_comparison': {'section_return': self.totoal_rate_of_return, 'annualized_returns': self.annualised_return,
                #                      'volatility': self.volatility, 'max_withdrawal': self.max_withdrawal,
                #                      'sharpe_ratio': self.sharpe_ratio},
                # 'index_comparison_500': {'section_return': self.index_section_return,
                #                          'annualized_returns': self.index_annualised_return,
                #                          'volatility': self.index_volatility, 'max_withdrawal': self.index_max_withdrawal,
                #                          'sharpe_ratio': self.index_sharpe_ratio},
                #
                # 'group_nav_info': self.group_nav_info,
                # 'group_hoding_info': self.group_hoding_info,
                # 'group_hoding_info_total': self.group_hoding_info_total,
                # 'old_evaluation': self.old_evaluation,
                # 'old_indicator_compare': self.old_indicator_compare,
                # 'contribution_decomposition': self.contribution_decomposition,
                # 'single_fund_data_list': self.single_fund_data_list,
                # 'old_correlation': self.old_correlation,
                # 'old_return_compare_pic': self.old_return_compare_pic,
                # # 'new_correlation': self.new_correlation,
                # # 'propose_fund_data_list': self.propose_fund_data_list,
                # # 'suggestions_result': self.suggestions_result,
                # # 'suggestions_result_asset': self.suggestions_result_asset,
                # # 'return_compare_pic': self.return_compare_pic,
                # # 'indicator_compare': self.indicator_compare,
                # # 'new_group_evaluation': self.new_group_evaluation
                # 'new_correlation': [],
                # 'propose_fund_data_list': [],
                # 'suggestions_result': {},
                # 'suggestions_result_asset': {},
                # 'return_compare_pic': [],
                # 'indicator_compare': [],
                # 'new_group_evaluation': []

                }
        # 开始渲染html模板
        env = Environment(loader=PackageLoader('app', 'templates'))  # 创建一个包加载器对象
        # template = env.get_template('monthReport.html')  # 获取一个模板文件
        template = env.get_template('/v2/monthReportV2.1.html')  # 获取一个模板文件
        monthReport_html = template.render(data)  # 渲染
        # 保存 monthReport_html
        # save_file = "app/html/monthReport.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)

        # save_file = "app/html/v2/monthReportV2.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
        html_to_pdf(monthReport_html, pdf_folder + self.pdf_name)



if __name__ == '__main__':
    start = time.time()
    DataIntegrate(ifa_id='USER_INFO15916072577875', customer_id='6716613804182482944')
    print('耗时{}秒'.format(round(time.time()-start, 2)))