jinjia2html_v2.py 18.3 KB
Newer Older
pengxiong's avatar
pengxiong committed
1
import json
pengxiong's avatar
pengxiong committed
2
import sys
赵杰's avatar
赵杰 committed
3 4 5 6 7
import time
import uuid

from jinja2 import PackageLoader, Environment

pengxiong's avatar
pengxiong committed
8
from app.api.engine import work_dir, pdf_folder, template_folder, pdf_save_folder
pengxiong's avatar
pengxiong committed
9
from app.config.default_template_params import hold_default_template, diagnose_default_template
赵杰's avatar
赵杰 committed
10
from app.service.fund_service import fund_index_compare
赵杰's avatar
赵杰 committed
11 12 13 14 15
from app.service.portfolio_diagnose import PortfolioDiagnose
from app.service.result_service_v2 import UserCustomerResultAdaptor
import numpy as np
from concurrent import futures
import os
16
from datetime import datetime
赵杰's avatar
赵杰 committed
17 18 19

# 准备数据
from app.utils.draw import draw_month_return_chart, draw_contribution_chart, draw_combination_chart, \
赵杰's avatar
赵杰 committed
20
    draw_old_combination_chart, draw_index_combination_chart
赵杰's avatar
赵杰 committed
21 22 23 24 25
from app.utils.html_to_pdf import html_to_pdf
from app.utils.radar_chart import gen_radar_chart


class DataIntegrate:
26
    def __init__(self, ifa_id='USER_INFO15917850824287', customer_id='6716613802534121472', pdf_name=str(uuid.uuid4()) + '.pdf', type=1):
赵杰's avatar
赵杰 committed
27 28
        self.user_customer = UserCustomerResultAdaptor(ifa_id, customer_id)
        self.customer_name = self.user_customer.customer_real_name
赵杰's avatar
赵杰 committed
29
        self.ifa_name = self.user_customer.ifa_real_name
pengxiong's avatar
pengxiong committed
30 31
        # self.pdf_name = self.ifa_name + "_" + self.customer_name + "_" + '.pdf'
        self.pdf_name = pdf_name
pengxiong's avatar
pengxiong committed
32 33
        # 1持仓报告2诊断报告
        self.type = type
赵杰's avatar
赵杰 committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        # 全部数据
        self.df = self.user_customer.calculate_total_data()
        # 组合结果数据
        self.d = self.user_customer.calculate_group_result_data()

        self.all_folio_result = {}
        # 分组合拼接结果数据
        self.get_group_result()

        # 投资总览
        self.get_summarize()
        # 月度回报
        self.get_month_return()
        # 月度回报表格
        self.get_month_table_return()

    # 分组和计算个基点评以及新增基金等结果
    def get_group_result(self):
        for group_name, group_result in self.d.items():
            portfolio_diagnose = self.get_portfolio_diagnose(group_result["fund_id_list"], invest_amount=group_result["total_cost"])
赵杰's avatar
赵杰 committed
54 55 56 57 58 59 60
            cur_group_portfolio_result = {
                'new_correlation': [],
                'propose_fund_data_list': [],
                'suggestions_result': {},
                'suggestions_result_asset': {},
                'return_compare_pic': [],
                'indicator_compare': [],
61 62
                'new_group_evaluation': [],
                "correlation": group_result["correlation"]
赵杰's avatar
赵杰 committed
63
            }
赵杰's avatar
赵杰 committed
64 65 66 67 68 69 70 71 72 73 74 75 76

            # 旧持仓组合点评
            self.comments_on_position_portfolio(portfolio_diagnose, group_name, cur_group_portfolio_result)
            # 贡献分解
            self.contribution_deco(group_result, cur_group_portfolio_result)
            # 目标与业绩
            self.objectives_performance(group_result, cur_group_portfolio_result)
            # 个基点评
            self.single_fund_comment(portfolio_diagnose, cur_group_portfolio_result)
            # 旧收益比较
            self.get_old_compare_pic(cur_group_portfolio_result)
            # 旧相关性
            self.get_old_correlation(portfolio_diagnose, cur_group_portfolio_result)
pengxiong's avatar
pengxiong committed
77 78 79 80 81 82 83
            if self.type == 2:
                # 新增基金
                self.propose_fund(portfolio_diagnose, cur_group_portfolio_result)
                # 新收益比较
                self.get_transfer_suggestions(portfolio_diagnose, group_name, cur_group_portfolio_result)
                # 新相关性
                self.get_new_correlation(portfolio_diagnose, cur_group_portfolio_result)
赵杰's avatar
赵杰 committed
84 85 86 87

            self.all_folio_result[group_name] = cur_group_portfolio_result

    def get_portfolio_diagnose(self, portfolio, client_type=1, invest_amount=10000000):
88 89
        if invest_amount < 10000000:
            invest_amount = 10000000
90 91 92 93
        folio_fund_dict = {}
        for fd in portfolio:
            folio_fund_dict[fd] = self.user_customer.all_fund_type_dict[fd]
        portfolio_diagnose = PortfolioDiagnose(client_type=client_type, portfolio=folio_fund_dict,
94
                                               invest_amount=float(invest_amount),
赵杰's avatar
赵杰 committed
95
                                               start_date=self.user_customer.start_date)
96 97
        if self.type == 2:
            portfolio_diagnose.optimize()
赵杰's avatar
赵杰 committed
98 99 100 101 102
        return portfolio_diagnose

    # 全部数据综述结果
    def get_summarize(self):
        """投资总览."""
赵杰's avatar
赵杰 committed
103
        self.total_cost = int(self.df["total_cost"])  # 投资成本
赵杰's avatar
赵杰 committed
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        self.now_yield = round((self.df['cumulative_return']-1)*100, 2)     # 成立以来累计收益率
        self.now_annualised_return = round(self.df["return_ratio_year"] * 100, 2)  # 年化收益率
        self.index_yield = round((self.df["index_result"]["return_ratio"]-1)*100, 2)    # 指数收益率
        self.now_withdrawal = round(self.df["max_drawdown"][0]*100, 2)  # 最大回撤
        self.index_withdrawal = round(self.df["index_result"]["max_drawdown"][0]*100, 2)    # 指数最大回撤
        self.now_month_income = int(self.df["cur_month_profit"])  # 本月收益
        self.month_rise = round(self.df["cur_month_profit_ratio"] * 100, 2)  # 本月涨幅
        self.year_totoal_rate_of_return = round(self.df["cur_year_profit_ratio"] * 100, 2)  # 今年累计收益率
        self.now_year_income = int(self.df["cur_year_profit"])  # 今年累计收益
        self.final_balance = int(self.df["total_cost"] + self.df["cumulative_profit"])  # 期末资产
        self.total_profit = int(self.df["cumulative_profit"])  # 累计盈利

    def get_month_return(self):
        """月度回报."""
        """组合月度及累计回报率曲线图"""
        xlabels, product_list, cumulative = self.user_customer.get_month_return_chart()
        self.monthly_return_performance_pic = draw_month_return_chart(xlabels, product_list, cumulative)

    def get_month_table_return(self):
        """月度盈亏和期末资产"""
        self.monthly_table_return = self.df["month_return_data_dict"]

    # 旧组合持仓点评,贡献分解数据
    def comments_on_position_portfolio(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """旧持仓组合点评. 旧贡献分解数据"""
        cur_group_portfolio_result["old_evaluation"], cur_group_portfolio_result["old_return_compare_data"],\
        cur_group_portfolio_result["old_indicator_compare"] = portfolio_diagnose.old_evaluation(folio, self.d, self.user_customer)

    def contribution_deco(self, group_result, cur_group_portfolio_result):
        """贡献分解."""
        g_data = group_result["contribution_decomposition"]
        cur_group_portfolio_result["contribution_decomposition"] = draw_contribution_chart(g_data['xlabels'], g_data['product_list'], g_data['cumulative'])

    def single_fund_comment(self, portfolio_diagnose, cur_group_portfolio_result):
        """个基点评."""
        single_fund_data_list = []
        portfolio_evaluation = portfolio_diagnose.old_portfolio_evaluation()
赵杰's avatar
赵杰 committed
141
        index_compare_chart_data = portfolio_diagnose.original_fund_index_compare(self.user_customer.fund_cnav_total)
赵杰's avatar
赵杰 committed
142 143 144 145 146 147 148 149
        # with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
        #     res = executor.map(draw_index_combination_chart, index_compare_chart_data)
        # res = list(res)
        res = []
        for chart_data in index_compare_chart_data:
            r = draw_index_combination_chart(chart_data)
            res.append(r)

赵杰's avatar
赵杰 committed
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        for i in range(len(portfolio_evaluation)):
            single_fund_data_list.append({
                'fund_name': portfolio_evaluation[i]['name'],
                'status': portfolio_evaluation[i]['status'],
                'evaluation': portfolio_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["single_fund_data_list"] = single_fund_data_list

    def get_old_compare_pic(self, cur_group_portfolio_result):
        """旧收益比较"""
        cur_group_portfolio_result["old_return_compare_pic"] = draw_old_combination_chart(cur_group_portfolio_result["old_return_compare_data"]["xlabels"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["origin_combination"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["index"])

    def get_transfer_suggestions(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """新收益比较,调仓建议"""
        cur_group_portfolio_result["suggestions_result"], cur_group_portfolio_result["suggestions_result_asset"], \
        cur_group_portfolio_result["return_compare_data"], \
        cur_group_portfolio_result["indicator_compare"], cur_group_portfolio_result["new_group_evaluation"] = portfolio_diagnose.new_evaluation(folio, self.d,
                                                                                                   self.user_customer)

        cur_group_portfolio_result["return_compare_pic"] = draw_combination_chart(cur_group_portfolio_result["return_compare_data"]["xlabels"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["new_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["origin_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["index"])

    def get_old_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """旧相关性分析."""
179
        old_correlation = cur_group_portfolio_result["correlation"]
赵杰's avatar
赵杰 committed
180 181 182
        old_correlation_columns = old_correlation.columns.tolist()
        old_correlation_values = old_correlation.values.tolist()
        cur_group_portfolio_result["old_correlation"] = list(zip(range(1, len(old_correlation_columns)+1), old_correlation_columns, old_correlation_values))
赵杰's avatar
赵杰 committed
183
        del cur_group_portfolio_result["correlation"]
赵杰's avatar
赵杰 committed
184 185 186 187 188 189 190 191 192 193 194 195 196

    def get_new_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """新相关性分析."""
        new_correlation = portfolio_diagnose.new_correlation
        new_correlation_columns = new_correlation.columns.tolist()
        new_correlation_values = new_correlation.values.tolist()
        cur_group_portfolio_result["new_correlation"] = list(zip(range(1, len(new_correlation_columns)+1), new_correlation_columns, new_correlation_values))

    def propose_fund(self, portfolio_diagnose, cur_group_portfolio_result):
        """新增基金"""
        # 优化组合建议1 -- 新增基金
        propose_fund_data_list = []
        propose_fund_evaluation = portfolio_diagnose.propose_fund_evaluation()
赵杰's avatar
赵杰 committed
197
        # propose_radar_chart_data = portfolio_diagnose.propose_fund_radar()
赵杰's avatar
赵杰 committed
198 199 200
        # with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
        #     res = executor.map(gen_radar_chart, propose_radar_chart_data)
        res = []
赵杰's avatar
赵杰 committed
201
        for fund_id in portfolio_diagnose.propose_portfolio.columns:
赵杰's avatar
赵杰 committed
202
            r = fund_index_compare(fund_id, portfolio_diagnose.portfolio_dict.get(fund_id, 2))
赵杰's avatar
赵杰 committed
203
            res.append(r)
赵杰's avatar
赵杰 committed
204 205 206 207 208 209 210 211 212 213 214 215
        for i in range(len(propose_fund_evaluation)):
            propose_fund_data_list.append({
                'fund_name': propose_fund_evaluation[i]['name'],
                'status': '增仓',
                'evaluation': propose_fund_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["propose_fund_data_list"] = propose_fund_data_list

    def objectives_performance(self, group_result, cur_group_portfolio_result):
        """目标与业绩"""

赵杰's avatar
赵杰 committed
216 217 218 219 220 221 222 223 224 225 226
        cur_group_portfolio_result["totoal_rate_of_return"] = "%.2f" % round((group_result['cumulative_return']-1)*100, 2)       # 成立以来累计收益率
        cur_group_portfolio_result["annualised_return"] = "%.2f" % round(group_result["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["volatility"] = "%.2f" % round(group_result["volatility"]*100, 2)
        cur_group_portfolio_result["max_withdrawal"] = "%.2f" % round(group_result["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["sharpe_ratio"] = "%.2f" % round(group_result["sharpe"], 2)
        cur_group_portfolio_result["cost_of_investment"] = "%.2f" % round(group_result["total_cost"]/10000.0, 2)    # 投资成本
        cur_group_portfolio_result["index_section_return"] = "%.2f" % round((group_result["index_result"]["return_ratio"]-1)*100, 2)
        cur_group_portfolio_result["index_annualised_return"] = "%.2f" % round(group_result["index_result"]["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["index_volatility"] = "%.2f" % round(group_result["index_result"]["volatility"]*100, 2)
        cur_group_portfolio_result["index_max_withdrawal"] = "%.2f" % round(group_result["index_result"]["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["index_sharpe_ratio"] = "%.2f" % round(group_result["index_result"]["sharpe"], 2)
赵杰's avatar
赵杰 committed
227 228 229 230 231

        cur_group_portfolio_result["group_nav_info"] = group_result["group_nav_info"]
        cur_group_portfolio_result["group_hoding_info"] = group_result["group_hoding_info"]
        cur_group_portfolio_result["group_hoding_info_total"] = group_result["group_hoding_info_total"]

pengxiong's avatar
pengxiong committed
232
    def get_template_data(self, default_template=None):
pengxiong's avatar
pengxiong committed
233
        """"""
pengxiong's avatar
pengxiong committed
234 235 236
        if self.type == 1:
            # 持仓报告数据
            data = {
赵杰's avatar
赵杰 committed
237 238
                # 全局数据
                'customer_name': self.customer_name,
239
                'year_month': datetime.now().strftime("%Y-%m-%d"),
pengxiong's avatar
pengxiong committed
240
                'valueSex': self.user_customer.valueSex,
赵杰's avatar
赵杰 committed
241 242 243 244 245
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'latest_worth_day': self.user_customer.last_nav_date,
                'customer_level': '平衡型',
                # 综述数据
pengxiong's avatar
pengxiong committed
246 247
                'now_allocation_amount': '{:,}'.format(self.total_cost), 'now_yield': self.now_yield,
                'index_yield': self.index_yield,
赵杰's avatar
赵杰 committed
248
                'now_annualised_return': self.now_annualised_return,
pengxiong's avatar
pengxiong committed
249 250 251 252
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal,
                'expected_withdrawal': 20,
                'now_year_income': '{:,}'.format(self.now_year_income),
                'now_month_income': '{:,}'.format(self.now_month_income),
赵杰's avatar
赵杰 committed
253
                'final_balance': '{:,}'.format(self.final_balance), 'total_profit': '{:,}'.format(self.total_profit),
赵杰's avatar
赵杰 committed
254 255
                'total_profit_temp': self.total_profit,
                'now_year_income_temp': self.now_year_income, 'now_month_income_temp': self.now_month_income,
赵杰's avatar
赵杰 committed
256 257 258 259 260 261 262 263

                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'monthly_table_return': self.monthly_table_return,

                # 组合数据
                'all_folio_result': self.all_folio_result,

pengxiong's avatar
pengxiong committed
264
            }
pengxiong's avatar
pengxiong committed
265 266 267 268
            if default_template:
                self.data = {**default_template, **data}
            else:
                self.data = {**hold_default_template, **data}
pengxiong's avatar
pengxiong committed
269 270 271 272 273
        elif self.type == 2:
            # 诊断报告数据
            data = {
                # 全局数据
                'customer_name': self.customer_name,
赵杰's avatar
赵杰 committed
274
                'year_month': self.user_customer.end_date.strftime("%Y-%m-%d"),
pengxiong's avatar
pengxiong committed
275
                'valueSex': self.user_customer.valueSex,
pengxiong's avatar
pengxiong committed
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'latest_worth_day': self.user_customer.last_nav_date,
                'customer_level': '平衡型',
                # 综述数据
                'now_allocation_amount': '{:,}'.format(self.total_cost), 'now_yield': self.now_yield,
                'index_yield': self.index_yield,
                'now_annualised_return': self.now_annualised_return,
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal,
                'expected_withdrawal': 20,
                'now_year_income': '{:,}'.format(self.now_year_income),
                'now_month_income': '{:,}'.format(self.now_month_income),
                'final_balance': '{:,}'.format(self.final_balance), 'total_profit': '{:,}'.format(self.total_profit),
                'total_profit_temp': self.total_profit,
                'now_year_income_temp': self.now_year_income, 'now_month_income_temp': self.now_month_income,
赵杰's avatar
赵杰 committed
291

pengxiong's avatar
pengxiong committed
292 293 294
                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'monthly_table_return': self.monthly_table_return,
赵杰's avatar
赵杰 committed
295

pengxiong's avatar
pengxiong committed
296 297 298
                # 组合数据
                'all_folio_result': self.all_folio_result,
            }
pengxiong's avatar
pengxiong committed
299 300 301 302
            if default_template:
                self.data = {**default_template, **data}
            else:
                self.data = {**hold_default_template, **data}
pengxiong's avatar
pengxiong committed
303 304
        return self.data

pengxiong's avatar
pengxiong committed
305
    def render_data(self, data=None):
pengxiong's avatar
pengxiong committed
306
        # 全部数据
pengxiong's avatar
pengxiong committed
307 308
        if data:
            self.data = data
赵杰's avatar
赵杰 committed
309 310 311 312
        # 开始渲染html模板
        env = Environment(loader=PackageLoader('app', 'templates'))  # 创建一个包加载器对象
        # template = env.get_template('monthReport.html')  # 获取一个模板文件
        template = env.get_template('/v2/monthReportV2.1.html')  # 获取一个模板文件
pengxiong's avatar
pengxiong committed
313
        monthReport_html = template.render(self.data).replace('None', 'none')  # 渲染
赵杰's avatar
赵杰 committed
314
        # 保存 monthReport_html
315
        # save_file = "app/pdf/monthReport.html"
pengxiong's avatar
pengxiong committed
316 317
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
赵杰's avatar
赵杰 committed
318 319 320 321

        # save_file = "app/html/v2/monthReportV2.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
pengxiong's avatar
pengxiong committed
322
        html_to_pdf(monthReport_html, pdf_save_folder + self.pdf_name)
赵杰's avatar
赵杰 committed
323 324 325 326


if __name__ == '__main__':
    start = time.time()
赵杰's avatar
赵杰 committed
327
    dt = DataIntegrate(ifa_id='USER_INFO15955928945523', customer_id='67347292618078412802', type=2)
pengxiong's avatar
pengxiong committed
328
    data = dt.get_template_data()
pengxiong's avatar
pengxiong committed
329
    dt.render_data()
赵杰's avatar
赵杰 committed
330
    print('耗时{}秒'.format(round(time.time()-start, 2)))