cla.py 16.6 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
"""
The ``cla`` module houses the CLA class, which
generates optimal portfolios using the Critical Line Algorithm as implemented
by Marcos Lopez de Prado and David Bailey.
"""

import math
import numpy as np
import pandas as pd
from . import base_optimizer


class CLA(base_optimizer.BaseOptimizer):

    """
    Instance variables:

    - Inputs:

        - ``n_assets`` - int
        - ``tickers`` - str list
        - ``mean`` - np.ndarray
        - ``cov_matrix`` - np.ndarray
        - ``expected_returns`` - np.ndarray
        - ``lb`` - np.ndarray
        - ``ub`` - np.ndarray

    - Optimisation parameters:

        - ``w`` - np.ndarray list
        - ``ls`` - float list
        - ``g`` - float list
        - ``f`` - float list list

    - Outputs:

        - ``weights`` - np.ndarray
        - ``frontier_values`` - (float list, float list, np.ndarray list)

    Public methods:

    - ``max_sharpe()`` optimises for maximal Sharpe ratio (a.k.a the tangency portfolio)
    - ``min_volatility()`` optimises for minimum volatility
    - ``efficient_frontier()`` computes the entire efficient frontier
    - ``portfolio_performance()`` calculates the expected return, volatility and Sharpe ratio for
      the optimised portfolio.
    - ``clean_weights()`` rounds the weights and clips near-zeros.
    - ``save_weights_to_file()`` saves the weights to csv, json, or txt.
    """

    def __init__(self, expected_returns, cov_matrix, weight_bounds=(0, 1)):
        """
        :param expected_returns: expected returns for each asset. Set to None if
                                 optimising for volatility only.
        :type expected_returns: pd.Series, list, np.ndarray
        :param cov_matrix: covariance of returns for each asset
        :type cov_matrix: pd.DataFrame or np.array
        :param weight_bounds: minimum and maximum weight of an asset, defaults to (0, 1).
                              Must be changed to (-1, 1) for portfolios with shorting.
        :type weight_bounds: tuple (float, float) or (list/ndarray, list/ndarray)
        :raises TypeError: if ``expected_returns`` is not a series, list or array
        :raises TypeError: if ``cov_matrix`` is not a dataframe or array
        """
        # Initialize the class
        self.mean = np.array(expected_returns).reshape((len(expected_returns), 1))
        if (self.mean == np.ones(self.mean.shape) * self.mean.mean()).all():
            self.mean[-1, 0] += 1e-5
        self.expected_returns = self.mean.reshape((len(self.mean),))
        self.cov_matrix = np.asarray(cov_matrix)

        # Bounds
        if len(weight_bounds) == len(self.mean) and not isinstance(
            weight_bounds[0], (float, int)
        ):
            self.lB = np.array([b[0] for b in weight_bounds]).reshape(-1, 1)
            self.uB = np.array([b[1] for b in weight_bounds]).reshape(-1, 1)
        else:
            if isinstance(weight_bounds[0], (float, int)):
                self.lB = np.ones(self.mean.shape) * weight_bounds[0]
            else:
                self.lB = np.array(weight_bounds[0]).reshape(self.mean.shape)
            if isinstance(weight_bounds[0], (float, int)):
                self.uB = np.ones(self.mean.shape) * weight_bounds[1]
            else:
                self.uB = np.array(weight_bounds[1]).reshape(self.mean.shape)

        self.w = []  # solution
        self.ls = []  # lambdas
        self.g = []  # gammas
        self.f = []  # free weights

        self.frontier_values = None  # result of computing efficient frontier

        if isinstance(expected_returns, pd.Series):
            tickers = list(expected_returns.index)
        else:
            tickers = list(range(len(self.mean)))
        super().__init__(len(tickers), tickers)

    @staticmethod
    def _infnone(x):
        """
        Helper method to map None to float infinity.

        :param x: argument
        :type x: float
        :return: infinity if the argmument was None otherwise x
        :rtype: float
        """
        return float("-inf") if x is None else x

    def _init_algo(self):
        # Initialize the algo
        # 1) Form structured array
        a = np.zeros((self.mean.shape[0]), dtype=[("id", int), ("mu", float)])
        b = [self.mean[i][0] for i in range(self.mean.shape[0])]  # dump array into list
        # fill structured array
        a[:] = list(zip(list(range(self.mean.shape[0])), b))
        # 2) Sort structured array
        b = np.sort(a, order="mu")
        # 3) First free weight
        i, w = b.shape[0], np.copy(self.lB)
        while sum(w) < 1:
            i -= 1
            w[b[i][0]] = self.uB[b[i][0]]
        w[b[i][0]] += 1 - sum(w)
        return [b[i][0]], w

    def _compute_bi(self, c, bi):
        if c > 0:
            bi = bi[1][0]
        if c < 0:
            bi = bi[0][0]
        return bi

    def _compute_w(self, covarF_inv, covarFB, meanF, wB):
        # 1) compute gamma
        onesF = np.ones(meanF.shape)
        g1 = np.dot(np.dot(onesF.T, covarF_inv), meanF)
        g2 = np.dot(np.dot(onesF.T, covarF_inv), onesF)
        if wB is None:
            g, w1 = float(-self.ls[-1] * g1 / g2 + 1 / g2), 0
        else:
            onesB = np.ones(wB.shape)
            g3 = np.dot(onesB.T, wB)
            g4 = np.dot(covarF_inv, covarFB)
            w1 = np.dot(g4, wB)
            g4 = np.dot(onesF.T, w1)
            g = float(-self.ls[-1] * g1 / g2 + (1 - g3 + g4) / g2)
        # 2) compute weights
        w2 = np.dot(covarF_inv, onesF)
        w3 = np.dot(covarF_inv, meanF)
        return -w1 + g * w2 + self.ls[-1] * w3, g

    def _compute_lambda(self, covarF_inv, covarFB, meanF, wB, i, bi):
        # 1) C
        onesF = np.ones(meanF.shape)
        c1 = np.dot(np.dot(onesF.T, covarF_inv), onesF)
        c2 = np.dot(covarF_inv, meanF)
        c3 = np.dot(np.dot(onesF.T, covarF_inv), meanF)
        c4 = np.dot(covarF_inv, onesF)
        c = -c1 * c2[i] + c3 * c4[i]
        if c == 0:
            return None, None
        # 2) bi
        if type(bi) == list:
            bi = self._compute_bi(c, bi)
        # 3) Lambda
        if wB is None:
            # All free assets
            return float((c4[i] - c1 * bi) / c), bi
        else:
            onesB = np.ones(wB.shape)
            l1 = np.dot(onesB.T, wB)
            l2 = np.dot(covarF_inv, covarFB)
            l3 = np.dot(l2, wB)
            l2 = np.dot(onesF.T, l3)
            return float(((1 - l1 + l2) * c4[i] - c1 * (bi + l3[i])) / c), bi

    def _get_matrices(self, f):
        # Slice covarF,covarFB,covarB,meanF,meanB,wF,wB
        covarF = self._reduce_matrix(self.cov_matrix, f, f)
        meanF = self._reduce_matrix(self.mean, f, [0])
        b = self._get_b(f)
        covarFB = self._reduce_matrix(self.cov_matrix, f, b)
        wB = self._reduce_matrix(self.w[-1], b, [0])
        return covarF, covarFB, meanF, wB

    def _get_b(self, f):
        return self._diff_lists(list(range(self.mean.shape[0])), f)

    @staticmethod
    def _diff_lists(list1, list2):
        return list(set(list1) - set(list2))

    @staticmethod
    def _reduce_matrix(matrix, listX, listY):
        # Reduce a matrix to the provided list of rows and columns
        if len(listX) == 0 or len(listY) == 0:
            return
        matrix_ = matrix[:, listY[0] : listY[0] + 1]
        for i in listY[1:]:
            a = matrix[:, i : i + 1]
            matrix_ = np.append(matrix_, a, 1)
        matrix__ = matrix_[listX[0] : listX[0] + 1, :]
        for i in listX[1:]:
            a = matrix_[i : i + 1, :]
            matrix__ = np.append(matrix__, a, 0)
        return matrix__

    def _purge_num_err(self, tol):
        # Purge violations of inequality constraints (associated with ill-conditioned cov matrix)
        i = 0
        while True:
            flag = False
            if i == len(self.w):
                break
            if abs(sum(self.w[i]) - 1) > tol:
                flag = True
            else:
                for j in range(self.w[i].shape[0]):
                    if (
                        self.w[i][j] - self.lB[j] < -tol
                        or self.w[i][j] - self.uB[j] > tol
                    ):
                        flag = True
                        break
            if flag is True:
                del self.w[i]
                del self.ls[i]
                del self.g[i]
                del self.f[i]
            else:
                i += 1

    def _purge_excess(self):
        # Remove violations of the convex hull
        i, repeat = 0, False
        while True:
            if repeat is False:
                i += 1
            if i == len(self.w) - 1:
                break
            w = self.w[i]
            mu = np.dot(w.T, self.mean)[0, 0]
            j, repeat = i + 1, False
            while True:
                if j == len(self.w):
                    break
                w = self.w[j]
                mu_ = np.dot(w.T, self.mean)[0, 0]
                if mu < mu_:
                    del self.w[i]
                    del self.ls[i]
                    del self.g[i]
                    del self.f[i]
                    repeat = True
                    break
                else:
                    j += 1

    def _golden_section(self, obj, a, b, **kargs):
        # Golden section method. Maximum if kargs['minimum']==False is passed
        tol, sign, args = 1.0e-9, 1, None
        if "minimum" in kargs and kargs["minimum"] is False:
            sign = -1
        if "args" in kargs:
            args = kargs["args"]
        numIter = int(math.ceil(-2.078087 * math.log(tol / abs(b - a))))
        r = 0.618033989
        c = 1.0 - r
        # Initialize
        x1 = r * a + c * b
        x2 = c * a + r * b
        f1 = sign * obj(x1, *args)
        f2 = sign * obj(x2, *args)
        # Loop
        for i in range(numIter):
            if f1 > f2:
                a = x1
                x1 = x2
                f1 = f2
                x2 = c * a + r * b
                f2 = sign * obj(x2, *args)
            else:
                b = x2
                x2 = x1
                f2 = f1
                x1 = r * a + c * b
                f1 = sign * obj(x1, *args)
        if f1 < f2:
            return x1, sign * f1
        else:
            return x2, sign * f2

    def _eval_sr(self, a, w0, w1):
        # Evaluate SR of the portfolio within the convex combination
        w = a * w0 + (1 - a) * w1
        b = np.dot(w.T, self.mean)[0, 0]
        c = np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5
        return b / c

    def _solve(self):
        # Compute the turning points,free sets and weights
        f, w = self._init_algo()
        self.w.append(np.copy(w))  # store solution
        self.ls.append(None)
        self.g.append(None)
        self.f.append(f[:])
        while True:
            # 1) case a): Bound one free weight
            l_in = None
            if len(f) > 1:
                covarF, covarFB, meanF, wB = self._get_matrices(f)
                covarF_inv = np.linalg.inv(covarF)
                j = 0
                for i in f:
                    l, bi = self._compute_lambda(
                        covarF_inv, covarFB, meanF, wB, j, [self.lB[i], self.uB[i]]
                    )
                    if CLA._infnone(l) > CLA._infnone(l_in):
                        l_in, i_in, bi_in = l, i, bi
                    j += 1
            # 2) case b): Free one bounded weight
            l_out = None
            if len(f) < self.mean.shape[0]:
                b = self._get_b(f)
                for i in b:
                    covarF, covarFB, meanF, wB = self._get_matrices(f + [i])
                    covarF_inv = np.linalg.inv(covarF)
                    l, bi = self._compute_lambda(
                        covarF_inv,
                        covarFB,
                        meanF,
                        wB,
                        meanF.shape[0] - 1,
                        self.w[-1][i],
                    )
                    if (self.ls[-1] is None or l < self.ls[-1]) and l > CLA._infnone(
                        l_out
                    ):
                        l_out, i_out = l, i
            if (l_in is None or l_in < 0) and (l_out is None or l_out < 0):
                # 3) compute minimum variance solution
                self.ls.append(0)
                covarF, covarFB, meanF, wB = self._get_matrices(f)
                covarF_inv = np.linalg.inv(covarF)
                meanF = np.zeros(meanF.shape)
            else:
                # 4) decide lambda
                if CLA._infnone(l_in) > CLA._infnone(l_out):
                    self.ls.append(l_in)
                    f.remove(i_in)
                    w[i_in] = bi_in  # set value at the correct boundary
                else:
                    self.ls.append(l_out)
                    f.append(i_out)
                covarF, covarFB, meanF, wB = self._get_matrices(f)
                covarF_inv = np.linalg.inv(covarF)
            # 5) compute solution vector
            wF, g = self._compute_w(covarF_inv, covarFB, meanF, wB)
            for i in range(len(f)):
                w[f[i]] = wF[i]
            self.w.append(np.copy(w))  # store solution
            self.g.append(g)
            self.f.append(f[:])
            if self.ls[-1] == 0:
                break
        # 6) Purge turning points
        self._purge_num_err(10e-10)
        self._purge_excess()

    def max_sharpe(self):
        """
        Maximise the Sharpe ratio.

        :return: asset weights for the max-sharpe portfolio
        :rtype: OrderedDict
        """
        if not self.w:
            self._solve()
        # 1) Compute the local max SR portfolio between any two neighbor turning points
        w_sr, sr = [], []
        for i in range(len(self.w) - 1):
            w0 = np.copy(self.w[i])
            w1 = np.copy(self.w[i + 1])
            kargs = {"minimum": False, "args": (w0, w1)}
            a, b = self._golden_section(self._eval_sr, 0, 1, **kargs)
            w_sr.append(a * w0 + (1 - a) * w1)
            sr.append(b)

        self.weights = w_sr[sr.index(max(sr))].reshape((self.n_assets,))
        return self._make_output_weights()

    def min_volatility(self):
        """
        Minimise volatility.

        :return: asset weights for the volatility-minimising portfolio
        :rtype: OrderedDict
        """
        if not self.w:
            self._solve()
        var = []
        for w in self.w:
            a = np.dot(np.dot(w.T, self.cov_matrix), w)
            var.append(a)
        # return min(var)**.5, self.w[var.index(min(var))]
        self.weights = self.w[var.index(min(var))].reshape((self.n_assets,))
        return self._make_output_weights()

    def efficient_frontier(self, points=100):
        """
        Efficiently compute the entire efficient frontier

        :param points: rough number of points to evaluate, defaults to 100
        :type points: int, optional
        :raises ValueError: if weights have not been computed
        :return: return list, std list, weight list
        :rtype: (float list, float list, np.ndarray list)
        """
        if not self.w:
            self._solve()

        mu, sigma, weights = [], [], []
        # remove the 1, to avoid duplications
        a = np.linspace(0, 1, points // len(self.w))[:-1]
        b = list(range(len(self.w) - 1))
        for i in b:
            w0, w1 = self.w[i], self.w[i + 1]
            if i == b[-1]:
                # include the 1 in the last iteration
                a = np.linspace(0, 1, points // len(self.w))
            for j in a:
                w = w1 * j + (1 - j) * w0
                weights.append(np.copy(w))
                mu.append(np.dot(w.T, self.mean)[0, 0])
                sigma.append(np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5)

        self.frontier_values = (mu, sigma, weights)
        return mu, sigma, weights

    def set_weights(self, _):
        # Overrides parent method since set_weights does nothing.
        raise NotImplementedError("set_weights does nothing for CLA")

    def portfolio_performance(self, verbose=False, risk_free_rate=0.02):
        """
        After optimising, calculate (and optionally print) the performance of the optimal
        portfolio. Currently calculates expected return, volatility, and the Sharpe ratio.

        :param verbose: whether performance should be printed, defaults to False
        :type verbose: bool, optional
        :param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02
        :type risk_free_rate: float, optional
        :raises ValueError: if weights have not been calculated yet
        :return: expected return, volatility, Sharpe ratio.
        :rtype: (float, float, float)
        """
        return base_optimizer.portfolio_performance(
            self.weights,
            self.expected_returns,
            self.cov_matrix,
            verbose,
            risk_free_rate,
        )