portfolio_diagnose.py 27.1 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
from app.utils.fund_rank import *
from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier


def cal_correlation(prod):
    """计算组合内基金相关性

    Args:
        prod: 组合净值表:索引为日期,列名为基金ID, 内容为净值

    Returns:屏蔽基金与自身相关性的相关矩阵,因为基金与自身相关性为1,妨碍后续高相关性基金筛选的判断

    """
    prod_return = prod.iloc[:, :].apply(lambda x: simple_return(x))
    correlation = prod_return.corr()
李宗熹's avatar
李宗熹 committed
19
    correlation = correlation.round(2)
李宗熹's avatar
李宗熹 committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    return correlation.mask(np.eye(correlation.shape[0], dtype=np.bool))


def rename_col(df, fund_id):
    """将列名由adj_nav改为基金ID

    Args:
        df: 原始净值表:索引为日期,列名分别为 ”fund_id“, "adj_nav", 内容为[基金ID,净值]
        fund_id: 基金ID

    Returns:删除 ”fund_id” 列, 重命名 “adj_nav” 列为基金ID的净值表

    """
    df.rename(columns={'adj_nav': fund_id}, inplace=True)
    df.drop('fund_id', axis=1, inplace=True)
    return df


def replace_fund(manager, substrategy, fund_rank):
    """查找不足半年数据的基金的替代基金

    Args:
        manager: 基金经理ID
        substrategy: 基金二级策略
        fund_rank:  基金打分排名表

    Returns: 满足相同基金经理ID下的同种二级策略的基金ID的第一个结果

    """
    df = fund_rank[(fund_rank['manager'] == manager) &
                   (fund_rank['substrategy'] == substrategy)]
    return df['fund_id'].values[0]


def search_rank(fund_rank, fund, metric):
    """查找基金在基金排名表中的指标

    Args:
        fund_rank: 基金排名表
        fund: 输入基金ID
        metric: 查找的指标名称

    Returns: 基金指标的值

    """
    return fund_rank[fund_rank['fund_id'] == fund][metric].values[0]


def translate_single(content, evaluation):
    '''
    content = [["优秀","良好","一般"],
           ["优秀","良好","合格","较差"],
           ["优秀","良好","合格","较差"],
           ["高","一般","较低"]]
    evaluation = [0,1,1,2]
    '''
    return tuple([content[i][v] if type(v) == int else v for i, v in enumerate(evaluation)])


def choose_good_evaluation(evaluation):
    """抽取好的评价

    Args:
        evaluation: 个基的评价

    Returns: 个基好的评价

    """
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]
    v5 = evaluation[5]

    if v1[0] > 1:
        del evaluation[1]
李宗熹's avatar
李宗熹 committed
96 97
    # if v2[0] > 1:
    if v2:
李宗熹's avatar
李宗熹 committed
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        del evaluation[2]
    if v3[0] > 1:
        del evaluation[3]
    if v4[0] != 0 or v4[1] != 0:
        del evaluation[4]
    if v5[0] < 3 or v5[2] > 1:  # 基金经理的基金管理年限小于三年或平均业绩处于中下水平
        del evaluation[5]

    return evaluation


def choose_bad_evaluation(evaluation):
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]

    if v1[0] < 2:
        del evaluation[1]
李宗熹's avatar
李宗熹 committed
117 118
    # if v2[0] < 2:
    if v2:
李宗熹's avatar
李宗熹 committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        del evaluation[2]
    if v3[0] < 2:
        del evaluation[3]
    if v4[0] != 1 or v4[1] != 1:
        del evaluation[4]

    return evaluation


def get_fund_rank():
    sql = "SELECT * FROM fund_rank"
    df = pd.read_sql(sql, con)
    # df = pd.read_csv('fund_rank.csv', encoding='gbk')
    return df


def get_index_daily(index_id):
    """获取指数数据

    Args:
        index_id: 指数ID

    Returns:与组合净值形式相同的表

    """
    sql = "SELECT ts_code, trade_date, close FROM index_daily WHERE ts_code='{}'".format(index_id)
    df = pd.read_sql(sql, con).dropna(how='any')
    df.rename({'ts_code': 'fund_id', 'trade_date': 'end_date', 'close': 'adj_nav'}, axis=1, inplace=True)
    df['end_date'] = pd.to_datetime(df['end_date'])
    df.set_index('end_date', drop=True, inplace=True)
    df.sort_index(inplace=True, ascending=True)
    df = rename_col(df, index_id)
    return df


def get_tamp_fund():
    """获取探普产品池净值表

    Returns:

    """
    sql = "SELECT id FROM tamp_fund_info WHERE id LIKE 'HF%'"
    df = pd.read_sql(sql, con)
    df.rename({'id': 'fund_id'}, axis=1, inplace=True)
    return df


def get_risk_level(substrategy):
    """获取风险类型

    Args:
        substrategy: 二级策略

    Returns:

    """
    substrategy2risk = {1: "H",
                        1010: "H", 1020: "H", 1030: "H",
                        2010: "H",
                        3010: "H", 3020: "L", 3030: "H", 3040: "L", 3050: "M",
                        4010: "M", 4020: "M", 4030: "M", 4040: "M",
                        5010: "M", 5020: "L", 5030: "M",
                        6010: "L", 6020: "M", 6030: "L",
                        7010: "H", 7020: "H",
                        8010: "H", 8020: "M"}
    return substrategy2risk[substrategy]


李宗熹's avatar
李宗熹 committed
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
def get_radar_data(fund):
    df = fund_rank[fund_rank['fund_id'] == fund]
    return_score = df['annual_return_rank'].values[0] * 100
    downside_score = df['downside_risk_rank'].values[0] * 100
    drawdown_score = df['max_drawdown_rank'].values[0] * 100
    sharpe_score = df['sharp_ratio_rank'].values[0] * 100
    total_score = df['z_score'].values[0]
    fund_name = get_fund_name(fund).values[0][0]
    # print(fund_name)
    return {'name': fund_name, 'data': [{'name': '绝对收益', 'data': '%.2f' % return_score},
                                        {'name': '抗风险能力', 'data': '%.2f' % downside_score},
                                        {'name': '极端风险', 'data': '%.2f' % drawdown_score},
                                        {'name': '风险调整后收益', 'data': '%.2f' % sharpe_score},
                                        {'name': '业绩持续性', 'data': '%.2f' % np.random.randint(70, 90)},
                                        {'name': '综合评分', 'data': '%.2f' % total_score}]}


def get_fund_name(fund):
    sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
    df = pd.read_sql(sql, con)
    return df


# 获取排名信息
李宗熹's avatar
李宗熹 committed
211
fund_rank = get_fund_rank()
李宗熹's avatar
李宗熹 committed
212
# 获取探普产品池
李宗熹's avatar
李宗熹 committed
213
tamp_fund = get_tamp_fund()
李宗熹's avatar
李宗熹 committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247


class PortfolioDiagnose(object):
    def __init__(self, client_type, portfolio, invest_amount, expect_return=None,
                 expect_drawdown=None, index_id='000905.SH', invest_type='private', start_date=None, end_date=None):
        """基金诊断

        Args:
            client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
            portfolio: 投资组合:[基金1, 基金2, 基金3...]
            invest_amount: 投资金额:10000000元
            invest_type: 投资类型:public, private, ...
            start_date: 诊断所需净值的开始日期
            end_date: 诊断所需净值的结束日期
        """

        self.freq_list = []
        self.client_type = client_type
        self.portfolio = portfolio
        self.expect_return = expect_return
        self.expect_drawdown = expect_drawdown
        self.index_id = index_id
        self.invest_amount = invest_amount
        self.invest_type = invest_type
        self.start_date = start_date
        self.end_date = end_date

        if self.end_date is None:
            self.end_date = datetime.datetime.now() - datetime.timedelta(days=1)
            self.start_date = cal_date(self.end_date, 'Y', 1)

        self.replace_pair = dict()  # 由于数据不足半年而被替换为相同基金经理和策略的原基金和替换基金的映射
        self.no_data_fund = []  # 未在数据库中找到基金净值或者基金经理记录的基金
        self.abandon_fund_score = []  # 打分不满足要求的基金
李宗熹's avatar
李宗熹 committed
248
        self.abandon_fund_corr = []  # 相关性过高
李宗熹's avatar
李宗熹 committed
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        self.proposal_fund = []  # 建议的基金
        self.old_correlation = None
        self.new_correlation = None
        self.old_weights = None
        self.new_weights = None

    def get_portfolio(self, ):
        """获取组合净值表

        Returns:

        """
        # 获取原始投资组合的第一支基金的净值表
        prod = get_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)
        fund_info = get_fund_info(self.end_date, invest_type=self.invest_type)

        while prod is None:
            # 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
            result = fund_info[fund_info['fund_id'] == portfolio[0]]
            manager = str(result['manager'].values)
            strategy = result['substrategy'].values
            replaced_fund = replace_fund(manager, strategy, fund_rank)

            if replaced_fund is not None:
                # 替换基金数据非空则记录替换的基金对
                prod = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
                self.replace_pair[portfolio[0]] = replaced_fund
            else:
                # 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
                self.no_data_fund.append(portfolio[0])
                self.portfolio.pop(0)
                prod = get_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)

        # 记录基金的公布频率
        self.freq_list.append(get_frequency(prod))
        prod = rename_col(prod, portfolio[0])

        # 循环拼接基金净值表构建组合
        for idx in range(len(portfolio) - 1):
            prod1 = get_nav(portfolio[idx + 1], self.start_date, invest_type=self.invest_type)

            if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
                result = fund_info[fund_info['fund_id'] == portfolio[idx + 1]]

                if result['fund_manager_id'].count() != 0:
                    manager = str(result['fund_manager_id'].values)
                    substrategy = result['substrategy'].values[0]
                    replaced_fund = replace_fund(manager, substrategy, fund_rank)
                else:
                    self.no_data_fund.append(portfolio[idx + 1])
                    continue

                if replaced_fund is not None:
                    prod1 = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
                    self.replace_pair[portfolio[0]] = replaced_fund
                    self.freq_list.append(get_frequency(prod1))
                    prod1 = rename_col(prod1, replaced_fund)
                else:
                    self.no_data_fund.append(portfolio[idx + 1])
                    continue
            else:
                self.freq_list.append(get_frequency(prod1))
                prod1 = rename_col(prod1, portfolio[idx + 1])

            # 取prod表和prod1表的并集
            prod = pd.merge(prod, prod1, on=['end_date'], how='outer')

        # 对所有合并后的基金净值表按最大周期进行重采样
        prod.sort_index(inplace=True)
        prod.ffill(inplace=True)
        prod = resample(prod, get_trade_cal(), min(self.freq_list))
        return prod

    def abandon(self, prod):
        """建议替换的基金

        Args:
            prod: 原始组合净值表

        Returns: 剔除建议替换基金的组合净值表

        """
        self.old_correlation = cal_correlation(prod)

        for fund in prod.columns:
            z_score = search_rank(fund_rank, fund, metric='z_score')
            # 建议替换得分为60或与其他基金相关度大于0.8的基金
            if z_score < 60:
                self.abandon_fund_score.append(fund)
                prod = prod.drop(fund, axis=1)

            if np.any(self.old_correlation[fund] > 0.8):
                self.abandon_fund_corr.append(fund)
                prod = prod.drop(fund, axis=1)
李宗熹's avatar
李宗熹 committed
343 344 345 346

        self.old_correlation = self.old_correlation.fillna(1).round(2)
        self.old_correlation.columns = self.old_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.old_correlation.index = self.old_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
347 348 349 350 351 352 353 354 355 356 357 358
        return prod

    def proposal(self, prod):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
        # 组合内已包含的策略
李宗熹's avatar
李宗熹 committed
359
        # included_strategy = set()
李宗熹's avatar
李宗熹 committed
360 361 362 363
        # 按每种基金最少投资100w确定组合包含的最大基金数量
        max_len = self.invest_amount // 1e6 - len(prod.columns)

        # 排名表内包含的所有策略
李宗熹's avatar
李宗熹 committed
364 365 366
        # all_strategy = set(fund_rank['substrategy'].to_list())
        # if prod is not None:
        #     included_strategy = set([search_rank(fund_rank, fund, metric='substrategy') for fund in prod.columns])
李宗熹's avatar
李宗熹 committed
367 368

        # 待添加策略为所有策略-组合已包含策略
李宗熹's avatar
李宗熹 committed
369
        # add_strategy = all_strategy - included_strategy
李宗熹's avatar
李宗熹 committed
370 371 372 373 374 375

        # 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金
        for proposal in tamp_fund['fund_id']:

            if proposal in fund_rank['fund_id'].to_list():
                proposal_z_score = search_rank(fund_rank, proposal, metric='z_score')
李宗熹's avatar
李宗熹 committed
376
                # proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
李宗熹's avatar
李宗熹 committed
377 378 379
            else:
                continue

李宗熹's avatar
李宗熹 committed
380 381
            # if proposal_z_score > 80 and proposal_strategy in add_strategy:
            if proposal_z_score > 60:
李宗熹's avatar
李宗熹 committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

                proposal_nav = get_nav(proposal, self.start_date, invest_type=self.invest_type)
                # 忽略净值周期大于周更的产品
                if get_frequency(proposal_nav) <= 52:
                    continue

                self.freq_list.append(get_frequency(proposal_nav))
                proposal_nav = rename_col(proposal_nav, proposal)

                # 按最大周期进行重采样,计算新建组合的相关性
                prod = pd.merge(prod, proposal_nav, how='outer', on='end_date')
                prod.sort_index(inplace=True)
                prod.ffill(inplace=True)
                prod = resample(prod, get_trade_cal(), min(self.freq_list))

李宗熹's avatar
李宗熹 committed
397 398
                self.new_correlation = cal_correlation(prod)
                judge_correlation = self.new_correlation.fillna(0)
李宗熹's avatar
李宗熹 committed
399

李宗熹's avatar
李宗熹 committed
400
                if np.all(judge_correlation < 0.8):
李宗熹's avatar
李宗熹 committed
401 402 403
                    self.proposal_fund.append(proposal)
                    max_len -= 1

李宗熹's avatar
李宗熹 committed
404 405 406
                    # add_strategy -= {proposal_strategy}
                    # if len(add_strategy) == 0 or max_len == 0:
                    if max_len == 0:
李宗熹's avatar
李宗熹 committed
407 408 409
                        break
                else:
                    prod.drop(columns=proposal, inplace=True)
李宗熹's avatar
李宗熹 committed
410 411 412 413

        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
414 415 416
        return prod

    def optimize(self, ):
李宗熹's avatar
李宗熹 committed
417 418
        import time
        start = time.time()
李宗熹's avatar
李宗熹 committed
419
        origin_portfolio = self.get_portfolio()
李宗熹's avatar
李宗熹 committed
420 421
        end1 = time.time()
        print("原始组合数据获取时间:", end1 - start)
李宗熹's avatar
李宗熹 committed
422
        abandoned_portfolio = self.abandon(origin_portfolio)
李宗熹's avatar
李宗熹 committed
423 424
        end2 = time.time()
        print("计算换仓基金时间:", end2 - end1)
李宗熹's avatar
李宗熹 committed
425
        propose_portfolio = self.proposal(abandoned_portfolio)
李宗熹's avatar
李宗熹 committed
426 427
        end3 = time.time()
        print("遍历产品池获取候选推荐时间:", end3 - end2)
李宗熹's avatar
李宗熹 committed
428
        # propose_portfolio.to_csv('test_portfolio.csv', encoding='gbk')
李宗熹's avatar
李宗熹 committed
429 430 431 432

        mu = expected_returns.mean_historical_return(propose_portfolio, frequency=min(self.freq_list))
        S = risk_models.sample_cov(propose_portfolio, frequency=min(self.freq_list))
        dd = expected_returns.drawdown_from_prices(propose_portfolio)
李宗熹's avatar
李宗熹 committed
433

李宗熹's avatar
李宗熹 committed
434
        # if self.client_type == 1:
李宗熹's avatar
李宗熹 committed
435 436 437 438 439 440 441 442 443 444
            # proposal_risk = [[x, get_risk_level(search_rank(fund_rank, x, metric='substrategy'))] for x in
            #                  propose_portfolio.columns]
            # self.proposal_fund = list(filter(lambda x: x[1] != 'H', proposal_risk))

            # drop_fund_list = list(filter(lambda x: x[1] = 'H', proposal_risk))
            # proposal_portfolio = list((set(self.portfolio) - set(self.no_data_fund) - set(self.replace_pair.keys())) | \
            #                           (set(self.proposal_fund) | set(self.replace_pair.values())))
            # propose_portfolio.drop()


李宗熹's avatar
李宗熹 committed
445 446 447 448
        propose_risk_mapper = dict()
        for fund in propose_portfolio.columns:
            propose_risk_mapper[fund] = str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))

李宗熹's avatar
李宗熹 committed
449 450 451 452
        # risk_upper = {"H": 0.0}
        # risk_lower = {"L": 0.6, "M": 0.4}

        w_low = 1e6 / self.invest_amount
李宗熹's avatar
李宗熹 committed
453
        ef = EfficientFrontier(mu, S, expected_drawdown=dd)
李宗熹's avatar
李宗熹 committed
454
        # ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
李宗熹's avatar
李宗熹 committed
455
        # weights = ef.nonconvex_objective(deviation_risk_parity, ef.cov_matrix)
李宗熹's avatar
李宗熹 committed
456
        ef.efficient_return(0.3)
李宗熹's avatar
李宗熹 committed
457
        clean_weights = ef.clean_weights()
李宗熹's avatar
李宗熹 committed
458
        ef.portfolio_performance(verbose=True)
李宗熹's avatar
李宗熹 committed
459
        self.new_weights = np.array(list(clean_weights.values()))
李宗熹's avatar
李宗熹 committed
460 461 462
        print(clean_weights)
        end4 = time.time()
        print("模型计算一次时间:", end4 - end3)
李宗熹's avatar
李宗熹 committed
463 464 465 466
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)
李宗熹's avatar
李宗熹 committed
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

        # elif self.client_type == 2:
        # elif self.client_type == 3:
        # elif self.client_type == 4:
        # elif self.client_type == 5:
        # print(len(propose_portfolio.columns))
        # # 单支基金占投资额的下界为 100W/投资总额
        # # w_low = 1e6 / self.invest_amount
        # w_low = 0
        # w_origin, S, mu = optim_drawdown(propose_portfolio, 0.5, [w_low, 1], min(self.freq_list))
        # print(w_origin)
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)

    def return_compare(self):
        index_data = get_index_daily(self.index_id)
        origin_portfolio = self.get_portfolio()
        abandoned_portfolio = self.abandon(origin_portfolio)
        propose_portfolio = self.proposal(abandoned_portfolio)
        index_data = pd.merge(index_data, propose_portfolio, how='inner', left_index=True, right_index=True)
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1
        # origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
        propose_fund_return = propose_portfolio.iloc[:, :] / propose_portfolio.iloc[0, :] - 1
        print(self.new_weights)
        propose_fund_return['return'] = propose_fund_return.T.iloc[:, :].apply(lambda x: np.dot(self.new_weights, x))
        propose_fund_return.to_csv('new_port.csv', encoding='gbk')
        return index_return, propose_fund_return

    def old_evaluation(self):
        start_year = self.start_date.year
        start_month = self.start_date.month
        current_year = datetime.datetime.now().year
        current_month = datetime.datetime.now().month
        current_day = datetime.datetime.now().day
        past_month = (current_year - start_year) * 12 + current_month - start_month
        num_fund = len(self.portfolio)
李宗熹's avatar
李宗熹 committed
505
        abandon_fund = [[x, self.invest_type] for x in self.abandon_fund_score + self.abandon_fund_corr]
李宗熹's avatar
李宗熹 committed
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        old_strategy = set([search_rank(fund_rank, x, metric='substrategy') for x in self.portfolio])

        data = [start_year, start_month, past_month, self.invest_amount,
                current_year, current_month, current_day]
        return data

    def new_evaluation(self):
        hold_fund = set(self.portfolio) - set(self.abandon_fund)
        abandon_fund = self.abandon_fund
        proposal_fund = self.proposal_fund
        data = [hold_fund, abandon_fund, proposal_fund]
        return data

    def single_evaluation(self, fund_id):
        """
           1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
           2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
           3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
           4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
           5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%

           旧个基显示1-4,新个基显示1-5。

           旧个基如果是要保留的,显示好的评价。
                如果是要剔除的,显示坏的评价。

           新个基只显示好的评价。
        Args:
            fund_id:

        Returns:
        """
        z_score = search_rank(fund_rank, fund_id, metric='z_score')
        total_level = np.select([z_score >= 80,
                                 70 <= z_score < 80,
                                 z_score < 70], [0, 1, 2]).item()

        return_rank = search_rank(fund_rank, fund_id, metric='annual_return_rank')
        return_level = np.select([return_rank >= 0.8,
                                  0.7 <= return_rank < 0.8,
                                  0.6 <= return_rank < 0.7,
                                  return_rank < 0.6], [0, 1, 2, 3]).item()
        return_bool = 1 if return_level > 2 else 0
        return_triple = return_level - 1 if return_level >= 2 else return_level

        drawdown_rank = search_rank(fund_rank, fund_id, metric='max_drawdown_rank')
        drawdown_value = search_rank(fund_rank, fund_id, metric='max_drawdown')
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        drawdown_bool = 1 if drawdown_level > 2 else 0
        drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

        sharp_rank = search_rank(fund_rank, fund_id, metric='sharp_ratio_rank')
        sharp_level = np.select([sharp_rank >= 0.8,
                                 0.6 <= sharp_rank < 0.8,
                                 sharp_rank < 0.6], [0, 1, 2]).item()

        data = {1: [total_level, return_level, drawdown_level, sharp_level],
李宗熹's avatar
李宗熹 committed
566 567
                2: [return_triple, "12", return_bool],
                3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
李宗熹's avatar
李宗熹 committed
568 569
                4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

李宗熹's avatar
李宗熹 committed
570
        if fund_id in self.abandon_fund_score:
李宗熹's avatar
李宗熹 committed
571 572 573 574 575 576 577 578
            data['remove'] = True
        elif fund_id in self.proposal_fund:
            data[5] = [1] * 7
            data['remove'] = False
        else:
            data['remove'] = False

        x = '30%'
李宗熹's avatar
李宗熹 committed
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        content = {
            # 第一个评价
            1: [["优秀", "良好", "一般"],
                ["优秀", "良好", "合格", "较差"],
                ["优秀", "良好", "合格", "较差"],
                ["高", "一般", "较低"]],
            # 第二个评价
            2: [["高于", "持平", "低于"],
                x,
                ["优秀", "一般"]],
            # 第三个评价
            3: [["优秀", "良好", "一般"],
                ["高", "中", "低"], x,
                ["高于", "持平", "低于"]],
            # 第四个评价
            4: [["较好", "较差"],
                ["较小", "较大"],
                ["较小", "较小"],
                ["较大", "较小"],
                ["较低", "较高"]],
            5: [["TO DO"]] * 7}
李宗熹's avatar
李宗熹 committed
600 601

        sentence = {
李宗熹's avatar
李宗熹 committed
602 603 604 605 606
            1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
            2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
            3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
            4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n",
            5: "基金经理,投资年限%s年,经验丰富;投资能力较强,生涯中共管理过%s只基金,历任的%s只基金平均业绩在同类中处于上游水平,其中%s只排名在前%s;生涯年化回报率%s,同期大盘只有%s;"}
李宗熹's avatar
李宗熹 committed
607 608 609 610 611 612 613 614 615 616 617

        remove = data["remove"]
        del data["remove"]

        # 不剔除,选择好的话术
        if not remove:
            evaluation = choose_good_evaluation(data)
        # 剔除,选择坏的话术
        else:
            evaluation = choose_bad_evaluation(data)

李宗熹's avatar
李宗熹 committed
618
        ret = []
李宗熹's avatar
李宗熹 committed
619 620
        for k, v in evaluation.items():
            # print(translate_single(content[k], v))
李宗熹's avatar
李宗熹 committed
621
            ret.append(sentence[k] % translate_single(content[k], v))
李宗熹's avatar
李宗熹 committed
622 623
        fund_name = get_fund_name(fund_id).values[0][0]
        return {'name': fund_name, 'data': ret}
李宗熹's avatar
李宗熹 committed
624 625 626 627

    def old_portfolio_evaluation(self, ):
        result = []
        for fund in self.portfolio:
李宗熹's avatar
李宗熹 committed
628 629 630 631
            try:
                result.append(self.single_evaluation(fund))
            except IndexError:
                continue
李宗熹's avatar
李宗熹 committed
632 633 634 635 636 637 638 639
        return result

    def propose_fund_evaluation(self, ):
        result = []
        for fund in self.proposal_fund:
            result.append(self.single_evaluation(fund))
        return result

李宗熹's avatar
李宗熹 committed
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    def single_fund_radar(self):
        radar_data = []
        for fund in self.portfolio:
            try:
                radar_data.append(get_radar_data(fund))
            except IndexError:
                continue
        return radar_data

    def propose_fund_radar(self):
        radar_data = []
        for fund in self.proposal_fund:
            radar_data.append(get_radar_data(fund))
        return radar_data

李宗熹's avatar
李宗熹 committed
655

李宗熹's avatar
李宗熹 committed
656 657 658
portfolio = ['HF00002JJ2', 'HF00005DBQ', 'HF0000681Q', 'HF00006693', 'HF00006AZF', 'HF00006BGS']
portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
portfolio_diagnose.optimize()
李宗熹's avatar
李宗熹 committed
659
if __name__ == '__main__':
李宗熹's avatar
李宗熹 committed
660 661 662 663 664 665 666
    # print(portfolio_diagnose.single_fund_radar())
    # print(portfolio_diagnose.propose_fund_radar())
    # print(portfolio_diagnose.old_portfolio_evaluation())
    print('旧组合相关性:', portfolio_diagnose.old_correlation)
    print('新组合相关性:', portfolio_diagnose.new_correlation)
    print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
    print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())