data_service.py 19.6 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/18 19:12
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : data_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sqlalchemy import and_
赵杰's avatar
赵杰 committed
12 13
import tushare as ts
import datetime
14
from decimal import Decimal
李宗熹's avatar
李宗熹 committed
15
from app.api.engine import tamp_user_engine, tamp_product_engine, TAMP_SQL
16 17
# from app.model.tamp_user_models import CustomerOrder, CustomerInfo
# from app.model.tamp_product_models import FundInfo
赵杰's avatar
赵杰 committed
18 19 20 21 22


class UserCustomerDataAdaptor:
    user_id = ""
    customer_id = ""
赵杰's avatar
赵杰 committed
23
    customer_real_name = ""
24
    month_date = ""
赵杰's avatar
赵杰 committed
25
    end_date = ""
赵杰's avatar
赵杰 committed
26
    group_data = {}
赵杰's avatar
赵杰 committed
27
    trade_cal_date = None
28 29
    all_fund_distribution = {}
    all_fund_performance = {}
赵杰's avatar
赵杰 committed
30

31
    def __init__(self, user_id, customer_id, end_date=str(datetime.date.today()), index_id="IN0000007M"):
赵杰's avatar
赵杰 committed
32 33
        self.user_id = user_id
        self.customer_id = customer_id
34
        self.compare_index_id = index_id
赵杰's avatar
赵杰 committed
35 36
        p_end_date = pd.to_datetime(end_date).date()
        p_end_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1) - datetime.timedelta(days=1)
37
        self.end_date = pd.to_datetime(str(p_end_date))
38
        # self.end_date = pd.to_datetime("2020-12-04")
39
        p_start_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1)
40
        self.month_start_date = p_start_date
41
        # self.month_start_date = pd.to_datetime("2020-11-01")
赵杰's avatar
赵杰 committed
42
        self.user_customer_order_df = self.get_user_customer_order_data()
43
        self.fund_nav_total, self.fund_cnav_total = self.get_customer_fund_nav_data()
44
        self.index_df = self.get_customer_index_nav_data()
45
        self.total_customer_order_cnav_df = self.total_combine_data()
赵杰's avatar
赵杰 committed
46 47 48 49 50 51 52 53 54 55 56 57 58
        self.group_operate()

    @staticmethod
    def get_trade_cal(start_date, end_date):
        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
        df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
59

赵杰's avatar
赵杰 committed
60
        return df
赵杰's avatar
赵杰 committed
61 62 63

    # 获取理财师下该用户所有订单列表
    def get_user_customer_order_data(self):
64 65
        # data1 = tamp_user_session.query(CustomerOrder)\
        #         #     .filter(user_id = self.user_id).all()
赵杰's avatar
赵杰 committed
66 67
        # data2 = tamp_user_session.query(t_customer_info).all()
        # data3 = tamp_product_session.query(t_fund_info).all()
李宗熹's avatar
李宗熹 committed
68 69 70
        with TAMP_SQL(tamp_user_engine) as tamp_user, TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_user_session = tamp_user.session
            tamp_product_session = tamp_product.session
71
            sql_user = """select f1.id, f2.realname,f3.customer_name,fund_id,f1.order_type,f1.pay_date,f1.subscription_fee,f1.confirm_share_date,f1.confirm_share,f1.confirm_amount,f1.nav,f1.folio_name from customer_order f1, user_info f2,customer_info f3   where f2.id=f1.user_id and f3.id=f1.customer_id and f1.user_id='{}' and f1.customer_id='{}'""".format(self.user_id, self.customer_id)
李宗熹's avatar
李宗熹 committed
72 73
            cur = tamp_user_session.execute(sql_user)
            data = cur.fetchall()
74
            order_df = pd.DataFrame(list(data), columns=['order_id', 'username', 'customer_name', 'fund_id', 'order_type', 'pay_date',
李宗熹's avatar
李宗熹 committed
75 76
                                                         'subscription_fee', 'confirm_share_date', 'confirm_share',
                                                         'confirm_amount', 'nav', 'folio_name'])
赵杰's avatar
赵杰 committed
77

李宗熹's avatar
李宗熹 committed
78 79 80 81
            sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
            cur = tamp_product_session.execute(sql_product)
            data = cur.fetchall()
            product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
赵杰's avatar
赵杰 committed
82

李宗熹's avatar
李宗熹 committed
83 84
            user_customer_order_df = order_df.set_index('fund_id').join(product_df.set_index('fund_id')).reset_index()
            self.start_date = user_customer_order_df["confirm_share_date"].min()
赵杰's avatar
赵杰 committed
85
            self.customer_real_name = user_customer_order_df["customer_name"].values[0]
李宗熹's avatar
李宗熹 committed
86
            return user_customer_order_df
赵杰's avatar
赵杰 committed
87 88 89

    # 获取客户持有的基金净值数据
    def get_customer_fund_nav_data(self):
李宗熹's avatar
李宗熹 committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            now_date = datetime.datetime.now().strftime("%Y%m%d")
            trade_date_df = self.get_trade_cal("20000101", now_date)
            self.trade_cal_date = trade_date_df
            all_fund_nav = pd.DataFrame(index=trade_date_df["datetime"])
            all_fund_cnav = pd.DataFrame(index=trade_date_df["datetime"])

            for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
                # 对应基金净值
                sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_nav_df = pd.DataFrame(list(data), columns=['price_date', 'nav', 'cnav'])

                # # 对应基金分红
                sql = """select distinct `distribute_date`, `distribution` from `fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_distribution_df = pd.DataFrame(list(data), columns=['price_date', 'distribution'])
                self.all_fund_distribution[cur_fund_id] = cur_fund_distribution_df

                # 对应基金performance数据
                sql = """select distinct `price_date`, `ret_1w`, `ret_cum_1m`, `ret_cum_6m`, `ret_cum_1y`, `ret_cum_ytd`, `ret_cum_incep` from `fund_performance` where `fund_id`='{}' order by `price_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_performance_df = pd.DataFrame(list(data),
                columns=['price_date', 'ret_1w', 'ret_cum_1m', 'ret_cum_6m', 'ret_cum_1y', 'ret_cum_ytd', 'ret_cum_incep'])
                self.all_fund_performance[cur_fund_id] = cur_fund_performance_df

                cur_fund_nav_df["price_date"] = pd.to_datetime(cur_fund_nav_df["price_date"])
123
                cur_fund_nav_df.drop_duplicates(subset="price_date", keep='first', inplace=True)
李宗熹's avatar
李宗熹 committed
124
                cur_fund_nav_df.set_index("price_date", inplace=True)
125
                cur_fund_nav_df = cur_fund_nav_df[cur_fund_nav_df.index.isin(all_fund_nav.index)]
李宗熹's avatar
李宗熹 committed
126 127 128 129 130
                all_fund_nav[cur_fund_id] = cur_fund_nav_df["nav"]
                all_fund_cnav[cur_fund_id] = cur_fund_nav_df["cnav"]

            all_fund_nav = all_fund_nav[all_fund_nav.index <= self.end_date]
            all_fund_cnav = all_fund_cnav[all_fund_cnav.index <= self.end_date]
131
            self.last_nav_date = str(all_fund_cnav.dropna(how="all").index.values[-1])[:10]
李宗熹's avatar
李宗熹 committed
132
            return all_fund_nav, all_fund_cnav
133

李宗熹's avatar
李宗熹 committed
134 135 136 137 138
    # 获取客户对比指数净值数据
    def get_customer_index_nav_data(self, index_id="IN0000007M"):
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            sql = "select distinct price_date,close from fund_market_indexes where index_id='{}'  order by price_date ASC".format(index_id)
139 140
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
李宗熹's avatar
李宗熹 committed
141 142 143 144 145
            index_df = pd.DataFrame(list(data), columns=['price_date', 'index'])
            index_df["price_date"] = pd.to_datetime(index_df["price_date"])
            index_df.set_index("price_date", inplace=True)
            self.fund_cnav_total["index"] = index_df["index"]
            self.index_df = index_df
146

李宗熹's avatar
李宗熹 committed
147
            return index_df
赵杰's avatar
赵杰 committed
148 149 150 151 152 153 154

    # 分组合计算
    def group_operate(self):
        for folio in self.user_customer_order_df["folio_name"].unique():
            cur_folio_order_df = self.user_customer_order_df[self.user_customer_order_df["folio_name"] == folio]
            fund_id_list = list(self.user_customer_order_df["fund_id"].unique())
            cur_folio_nav_df = self.fund_nav_total[fund_id_list]
155 156 157
            # fund_id_list.append("index")
            cur_folio_cnav_df = self.fund_cnav_total[fund_id_list]
            self.signal_folio_operate(folio, cur_folio_order_df, cur_folio_nav_df, cur_folio_cnav_df)
赵杰's avatar
赵杰 committed
158
            continue
赵杰's avatar
赵杰 committed
159

赵杰's avatar
赵杰 committed
160
    # 单个组合数据操作
161
    def signal_folio_operate(self, p_folio, p_order_df, p_nav_df, p_cnav_df):
赵杰's avatar
赵杰 committed
162 163
        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
赵杰's avatar
赵杰 committed
186
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
187 188
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
189 190 191
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
赵杰's avatar
赵杰 committed
192
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
赵杰's avatar
赵杰 committed
193
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
194
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
195 196

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
赵杰's avatar
赵杰 committed
197 198 199 200
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
            # # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            # if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
            #     last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     # 判断上个净值日和当前确认日之中是否存在分红日
            #     """need add judge"""
            #
            #     if len(last_nav_data) < 1:
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
            #     else:
            #         diff_nav = row["nav"] - last_nav_data.values[0]
            #         cur_cnav = last_cnav_data.values[0] + diff_nav
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

            if cur_fund_id+"_amount" not in cnav_df:
216 217
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
218
                cnav_df[cur_fund_id + "_profit"] = profit
219 220 221 222
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
223 224 225
                cnav_df[cur_fund_id+"_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0
赵杰's avatar
赵杰 committed
226 227 228

            # buy
            if row['order_type'] == 1:
229 230
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
赵杰's avatar
赵杰 committed
231 232
            # sell
            elif row['order_type'] == 2:
233 234
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]
赵杰's avatar
赵杰 committed
235

236 237 238 239 240 241 242 243
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_profit"] * cnav_df[cur_fund_id + "_share"]
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_earn"].apply(lambda x: float(x))
            # cnav_df[cur_fund_id + "_cum_earn"] = cnav_df[cur_fund_id + "_earn"].cumsum()

        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
244 245
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
246 247
            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
248 249
        self.group_data[p_folio] = {"result_cnav_data": cnav_df, "order_df": p_order_df}
        return cnav_df
赵杰's avatar
赵杰 committed
250

251
    # 所有的数据操作
252
    def total_combine_data(self):
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

        p_order_df = self.user_customer_order_df.copy()
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
赵杰's avatar
赵杰 committed
281
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
282 283
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
284 285 286
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
赵杰's avatar
赵杰 committed
287
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
赵杰's avatar
赵杰 committed
288
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
289
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
290 291 292 293 294 295

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in cnav_df:
296 297
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
298
                cnav_df[cur_fund_id + "_profit"] = profit
299 300 301 302
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
303 304 305 306
                cnav_df[cur_fund_id + "_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

307 308 309 310 311 312 313
                # profit = cnav_df[cur_fund_id].dropna() - cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit"] = profit
                # cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_profit_ratio"] = profit / cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_amount"] = 0
                # cnav_df[cur_fund_id + "_earn"] = 0
李宗熹's avatar
李宗熹 committed
314
                # cnav_df[cur_fund_id + "_cum_earn"] = 0
315 316
                # cnav_df[cur_fund_id + "_share"] = 0

317 318 319 320 321 322 323 324 325
            # buy
            if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
            # sell
            elif row['order_type'] == 2:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]

326 327 328 329
        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
330
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
331 332 333

            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
334
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
335
        return cnav_df