plotting.py 5.4 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
"""
The ``plotting`` module houses all the functions to generate various plots.

Currently implemented:

  - ``plot_covariance`` - plot a correlation matrix
  - ``plot_dendrogram`` - plot the hierarchical clusters in a portfolio
  - ``plot_efficient_frontier`` – plot the efficient frontier, using the CLA algorithm.
  - ``plot_weights`` - bar chart of weights
"""

import numpy as np
from . import risk_models
import scipy.cluster.hierarchy as sch

try:
    import matplotlib.pyplot as plt

    plt.style.use("seaborn-deep")
except (ModuleNotFoundError, ImportError):
    raise ImportError("Please install matplotlib via pip or poetry")


def _plot_io(**kwargs):
    """
    Helper method to optionally save the figure to file.

    :param filename: name of the file to save to, defaults to None (doesn't save)
    :type filename: str, optional
    :param dpi: dpi of figure to save or plot, defaults to 300
    :type dpi: int (between 50-500)
    :param showfig: whether to plt.show() the figure, defaults to True
    :type showfig: bool, optional
    """
    filename = kwargs.get("filename", None)
    showfig = kwargs.get("showfig", True)
    dpi = kwargs.get("dpi", 300)

    plt.tight_layout()
    if filename:
        plt.savefig(fname=filename, dpi=dpi)
    if showfig:
        plt.show()


def plot_covariance(cov_matrix, plot_correlation=False, show_tickers=True, **kwargs):
    """
    Generate a basic plot of the covariance (or correlation) matrix, given a
    covariance matrix.

    :param cov_matrix: covariance matrix
    :type cov_matrix: pd.DataFrame or np.ndarray
    :param plot_correlation: whether to plot the correlation matrix instead, defaults to False.
    :type plot_correlation: bool, optional
    :param show_tickers: whether to use tickers as labels (not recommended for large portfolios),
                        defaults to True
    :type show_tickers: bool, optional

    :return: matplotlib axis
    :rtype: matplotlib.axes object
    """
    if plot_correlation:
        matrix = risk_models.cov_to_corr(cov_matrix)
    else:
        matrix = cov_matrix
    fig, ax = plt.subplots()

    cax = ax.imshow(matrix)
    fig.colorbar(cax)

    if show_tickers:
        ax.set_xticks(np.arange(0, matrix.shape[0], 1))
        ax.set_xticklabels(matrix.index)
        ax.set_yticks(np.arange(0, matrix.shape[0], 1))
        ax.set_yticklabels(matrix.index)
        plt.xticks(rotation=90)

    _plot_io(**kwargs)

    return ax


def plot_dendrogram(hrp, show_tickers=True, **kwargs):
    """
    Plot the clusters in the form of a dendrogram.

    :param hrp: HRPpt object that has already been optimized.
    :type hrp: object
    :param show_tickers: whether to use tickers as labels (not recommended for large portfolios),
                        defaults to True
    :type show_tickers: bool, optional
    :param filename: name of the file to save to, defaults to None (doesn't save)
    :type filename: str, optional
    :param showfig: whether to plt.show() the figure, defaults to True
    :type showfig: bool, optional
    :return: matplotlib axis
    :rtype: matplotlib.axes object
    """
    if hrp.clusters is None:
        hrp.optimize()

    fig, ax = plt.subplots()
    if show_tickers:
        sch.dendrogram(hrp.clusters, labels=hrp.tickers, ax=ax, orientation="top")
        plt.xticks(rotation=90)
        plt.tight_layout()
    else:
        sch.dendrogram(hrp.clusters, no_labels=True, ax=ax)

    _plot_io(**kwargs)

    return ax


def plot_efficient_frontier(cla, points=100, show_assets=True, **kwargs):
    """
    Plot the efficient frontier based on a CLA object

    :param points: number of points to plot, defaults to 100
    :type points: int, optional
    :param show_assets: whether we should plot the asset risks/returns also, defaults to True
    :type show_assets: bool, optional
    :param filename: name of the file to save to, defaults to None (doesn't save)
    :type filename: str, optional
    :param showfig: whether to plt.show() the figure, defaults to True
    :type showfig: bool, optional
    :return: matplotlib axis
    :rtype: matplotlib.axes object
    """
    if cla.weights is None:
        cla.max_sharpe()
    optimal_ret, optimal_risk, _ = cla.portfolio_performance()

    if cla.frontier_values is None:
        cla.efficient_frontier(points=points)

    mus, sigmas, _ = cla.frontier_values

    fig, ax = plt.subplots()
    ax.plot(sigmas, mus, label="Efficient frontier")

    if show_assets:
        ax.scatter(
            np.sqrt(np.diag(cla.cov_matrix)),
            cla.expected_returns,
            s=30,
            color="k",
            label="assets",
        )

    ax.scatter(optimal_risk, optimal_ret, marker="x", s=100, color="r", label="optimal")
    ax.legend()
    ax.set_xlabel("Volatility")
    ax.set_ylabel("Return")

    _plot_io(**kwargs)
    return ax


def plot_weights(weights, **kwargs):
    """
    Plot the portfolio weights as a horizontal bar chart

    :param weights: the weights outputted by any PyPortfolioOpt optimiser
    :type weights: {ticker: weight} dict
    :return: matplotlib axis
    :rtype: matplotlib.axes object
    """
    desc = sorted(weights.items(), key=lambda x: x[1], reverse=True)
    labels = [i[0] for i in desc]
    vals = [i[1] for i in desc]

    y_pos = np.arange(len(labels))

    fig, ax = plt.subplots()
    ax.barh(y_pos, vals)
    ax.set_xlabel("Weight")
    ax.set_yticks(y_pos)
    ax.set_yticklabels(labels)
    ax.invert_yaxis()

    _plot_io(**kwargs)
    return ax