data_service.py 19.9 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/18 19:12
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : data_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sqlalchemy import and_
赵杰's avatar
赵杰 committed
12 13
import tushare as ts
import datetime
赵杰's avatar
赵杰 committed
14
import math
15
from decimal import Decimal
李宗熹's avatar
李宗熹 committed
16
from app.api.engine import tamp_user_engine, tamp_product_engine, TAMP_SQL
17 18
# from app.model.tamp_user_models import CustomerOrder, CustomerInfo
# from app.model.tamp_product_models import FundInfo
赵杰's avatar
赵杰 committed
19 20 21 22 23


class UserCustomerDataAdaptor:
    user_id = ""
    customer_id = ""
赵杰's avatar
赵杰 committed
24
    customer_real_name = ""
25
    month_date = ""
赵杰's avatar
赵杰 committed
26
    end_date = ""
赵杰's avatar
赵杰 committed
27
    group_data = {}
赵杰's avatar
赵杰 committed
28
    trade_cal_date = None
29 30
    all_fund_distribution = {}
    all_fund_performance = {}
赵杰's avatar
赵杰 committed
31

32
    def __init__(self, user_id, customer_id, end_date=str(datetime.date.today()), index_id="IN0000007M"):
赵杰's avatar
赵杰 committed
33 34
        self.user_id = user_id
        self.customer_id = customer_id
35
        self.compare_index_id = index_id
赵杰's avatar
赵杰 committed
36 37
        p_end_date = pd.to_datetime(end_date).date()
        p_end_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1) - datetime.timedelta(days=1)
38
        self.end_date = pd.to_datetime(str(p_end_date))
39
        # self.end_date = pd.to_datetime("2020-12-04")
40
        p_start_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1)
41
        self.month_start_date = p_start_date
42
        # self.month_start_date = pd.to_datetime("2020-11-01")
赵杰's avatar
赵杰 committed
43
        self.user_customer_order_df = self.get_user_customer_order_data()
44
        self.fund_nav_total, self.fund_cnav_total = self.get_customer_fund_nav_data()
45
        self.index_df = self.get_customer_index_nav_data()
46
        self.total_customer_order_cnav_df = self.total_combine_data()
赵杰's avatar
赵杰 committed
47 48 49 50 51 52 53 54 55 56 57 58 59
        self.group_operate()

    @staticmethod
    def get_trade_cal(start_date, end_date):
        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
        df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
60

赵杰's avatar
赵杰 committed
61
        return df
赵杰's avatar
赵杰 committed
62 63 64

    # 获取理财师下该用户所有订单列表
    def get_user_customer_order_data(self):
65 66
        # data1 = tamp_user_session.query(CustomerOrder)\
        #         #     .filter(user_id = self.user_id).all()
赵杰's avatar
赵杰 committed
67 68
        # data2 = tamp_user_session.query(t_customer_info).all()
        # data3 = tamp_product_session.query(t_fund_info).all()
李宗熹's avatar
李宗熹 committed
69 70 71
        with TAMP_SQL(tamp_user_engine) as tamp_user, TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_user_session = tamp_user.session
            tamp_product_session = tamp_product.session
72
            sql_user = """select f1.id, f2.realname,f3.customer_name,fund_id,f1.order_type,f1.pay_date,f1.subscription_fee,f1.confirm_share_date,f1.confirm_share,f1.confirm_amount,f1.nav,f1.folio_name from customer_order f1, user_info f2,customer_info f3   where f2.id=f1.user_id and f3.id=f1.customer_id and f1.user_id='{}' and f1.customer_id='{}'""".format(self.user_id, self.customer_id)
李宗熹's avatar
李宗熹 committed
73 74
            cur = tamp_user_session.execute(sql_user)
            data = cur.fetchall()
75
            order_df = pd.DataFrame(list(data), columns=['order_id', 'username', 'customer_name', 'fund_id', 'order_type', 'pay_date',
李宗熹's avatar
李宗熹 committed
76 77
                                                         'subscription_fee', 'confirm_share_date', 'confirm_share',
                                                         'confirm_amount', 'nav', 'folio_name'])
赵杰's avatar
赵杰 committed
78

李宗熹's avatar
李宗熹 committed
79 80 81 82
            sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
            cur = tamp_product_session.execute(sql_product)
            data = cur.fetchall()
            product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
赵杰's avatar
赵杰 committed
83

李宗熹's avatar
李宗熹 committed
84 85
            user_customer_order_df = order_df.set_index('fund_id').join(product_df.set_index('fund_id')).reset_index()
            self.start_date = user_customer_order_df["confirm_share_date"].min()
赵杰's avatar
赵杰 committed
86
            self.customer_real_name = user_customer_order_df["customer_name"].values[0]
李宗熹's avatar
李宗熹 committed
87
            return user_customer_order_df
赵杰's avatar
赵杰 committed
88 89 90

    # 获取客户持有的基金净值数据
    def get_customer_fund_nav_data(self):
李宗熹's avatar
李宗熹 committed
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            now_date = datetime.datetime.now().strftime("%Y%m%d")
            trade_date_df = self.get_trade_cal("20000101", now_date)
            self.trade_cal_date = trade_date_df
            all_fund_nav = pd.DataFrame(index=trade_date_df["datetime"])
            all_fund_cnav = pd.DataFrame(index=trade_date_df["datetime"])

            for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
                # 对应基金净值
                sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_nav_df = pd.DataFrame(list(data), columns=['price_date', 'nav', 'cnav'])

                # # 对应基金分红
                sql = """select distinct `distribute_date`, `distribution` from `fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_distribution_df = pd.DataFrame(list(data), columns=['price_date', 'distribution'])
                self.all_fund_distribution[cur_fund_id] = cur_fund_distribution_df

                # 对应基金performance数据
                sql = """select distinct `price_date`, `ret_1w`, `ret_cum_1m`, `ret_cum_6m`, `ret_cum_1y`, `ret_cum_ytd`, `ret_cum_incep` from `fund_performance` where `fund_id`='{}' order by `price_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_performance_df = pd.DataFrame(list(data),
                columns=['price_date', 'ret_1w', 'ret_cum_1m', 'ret_cum_6m', 'ret_cum_1y', 'ret_cum_ytd', 'ret_cum_incep'])
                self.all_fund_performance[cur_fund_id] = cur_fund_performance_df

                cur_fund_nav_df["price_date"] = pd.to_datetime(cur_fund_nav_df["price_date"])
124
                cur_fund_nav_df.drop_duplicates(subset="price_date", keep='first', inplace=True)
李宗熹's avatar
李宗熹 committed
125
                cur_fund_nav_df.set_index("price_date", inplace=True)
126
                cur_fund_nav_df = cur_fund_nav_df[cur_fund_nav_df.index.isin(all_fund_nav.index)]
李宗熹's avatar
李宗熹 committed
127 128 129 130 131
                all_fund_nav[cur_fund_id] = cur_fund_nav_df["nav"]
                all_fund_cnav[cur_fund_id] = cur_fund_nav_df["cnav"]

            all_fund_nav = all_fund_nav[all_fund_nav.index <= self.end_date]
            all_fund_cnav = all_fund_cnav[all_fund_cnav.index <= self.end_date]
赵杰's avatar
赵杰 committed
132 133 134
            # for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
            #     all_fund_nav[cur_fund_id][all_fund_nav[cur_fund_id].apply(lambda x: math.isnan(x))]=np.nan
            #     all_fund_cnav[cur_fund_id][all_fund_cnav[cur_fund_id].apply(lambda x: math.isnan(x))] = np.nan
135
            self.last_nav_date = str(all_fund_cnav.dropna(how="all").index.values[-1])[:10]
李宗熹's avatar
李宗熹 committed
136
            return all_fund_nav, all_fund_cnav
137

李宗熹's avatar
李宗熹 committed
138 139 140 141 142
    # 获取客户对比指数净值数据
    def get_customer_index_nav_data(self, index_id="IN0000007M"):
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            sql = "select distinct price_date,close from fund_market_indexes where index_id='{}'  order by price_date ASC".format(index_id)
143 144
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
李宗熹's avatar
李宗熹 committed
145 146 147 148 149
            index_df = pd.DataFrame(list(data), columns=['price_date', 'index'])
            index_df["price_date"] = pd.to_datetime(index_df["price_date"])
            index_df.set_index("price_date", inplace=True)
            self.fund_cnav_total["index"] = index_df["index"]
            self.index_df = index_df
150

李宗熹's avatar
李宗熹 committed
151
            return index_df
赵杰's avatar
赵杰 committed
152 153 154 155 156 157 158

    # 分组合计算
    def group_operate(self):
        for folio in self.user_customer_order_df["folio_name"].unique():
            cur_folio_order_df = self.user_customer_order_df[self.user_customer_order_df["folio_name"] == folio]
            fund_id_list = list(self.user_customer_order_df["fund_id"].unique())
            cur_folio_nav_df = self.fund_nav_total[fund_id_list]
159 160 161
            # fund_id_list.append("index")
            cur_folio_cnav_df = self.fund_cnav_total[fund_id_list]
            self.signal_folio_operate(folio, cur_folio_order_df, cur_folio_nav_df, cur_folio_cnav_df)
赵杰's avatar
赵杰 committed
162
            continue
赵杰's avatar
赵杰 committed
163

赵杰's avatar
赵杰 committed
164
    # 单个组合数据操作
165
    def signal_folio_operate(self, p_folio, p_order_df, p_nav_df, p_cnav_df):
赵杰's avatar
赵杰 committed
166 167
        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
赵杰's avatar
赵杰 committed
190
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
191 192
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
193 194 195
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
赵杰's avatar
赵杰 committed
196
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
赵杰's avatar
赵杰 committed
197
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
198
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
199 200

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
赵杰's avatar
赵杰 committed
201 202 203 204
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            # # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            # if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
            #     last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     # 判断上个净值日和当前确认日之中是否存在分红日
            #     """need add judge"""
            #
            #     if len(last_nav_data) < 1:
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
            #     else:
            #         diff_nav = row["nav"] - last_nav_data.values[0]
            #         cur_cnav = last_cnav_data.values[0] + diff_nav
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

            if cur_fund_id+"_amount" not in cnav_df:
220 221
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
222
                cnav_df[cur_fund_id + "_profit"] = profit
223 224 225 226
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
227 228 229
                cnav_df[cur_fund_id+"_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0
赵杰's avatar
赵杰 committed
230 231 232

            # buy
            if row['order_type'] == 1:
233 234
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
赵杰's avatar
赵杰 committed
235 236
            # sell
            elif row['order_type'] == 2:
237 238
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]
赵杰's avatar
赵杰 committed
239

240 241 242 243 244 245 246 247
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_profit"] * cnav_df[cur_fund_id + "_share"]
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_earn"].apply(lambda x: float(x))
            # cnav_df[cur_fund_id + "_cum_earn"] = cnav_df[cur_fund_id + "_earn"].cumsum()

        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
248 249
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
250 251
            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
252 253
        self.group_data[p_folio] = {"result_cnav_data": cnav_df, "order_df": p_order_df}
        return cnav_df
赵杰's avatar
赵杰 committed
254

255
    # 所有的数据操作
256
    def total_combine_data(self):
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

        p_order_df = self.user_customer_order_df.copy()
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
赵杰's avatar
赵杰 committed
276
            if pd.isnull(p_nav_df.loc[confirm_share_date, cur_fund_id]):
277 278 279 280 281 282 283 284
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
赵杰's avatar
赵杰 committed
285
                    diff_nav = Decimal(row["nav"]) - Decimal(last_nav_data.values[0])
286 287
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
288 289 290
            else:
                confirm_date_nav_data = p_nav_df[p_nav_df.index == confirm_share_date][cur_fund_id].tail(1)
                confirm_date_cnav_data = p_cnav_df[p_cnav_df.index == confirm_share_date][cur_fund_id].tail(1)
赵杰's avatar
赵杰 committed
291
                diff_nav = Decimal(row["nav"]) - Decimal(confirm_date_nav_data.values[0])
赵杰's avatar
赵杰 committed
292
                cur_cnav = Decimal(confirm_date_cnav_data.values[0]) + diff_nav
293
                cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav
294 295 296 297 298 299

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in cnav_df:
300 301
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
302
                cnav_df[cur_fund_id + "_profit"] = profit
303 304 305 306
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
307 308 309 310
                cnav_df[cur_fund_id + "_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

311 312 313 314 315 316 317
                # profit = cnav_df[cur_fund_id].dropna() - cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit"] = profit
                # cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_profit_ratio"] = profit / cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_amount"] = 0
                # cnav_df[cur_fund_id + "_earn"] = 0
李宗熹's avatar
李宗熹 committed
318
                # cnav_df[cur_fund_id + "_cum_earn"] = 0
319 320
                # cnav_df[cur_fund_id + "_share"] = 0

321 322 323 324 325 326 327 328 329
            # buy
            if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
            # sell
            elif row['order_type'] == 2:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]

330 331 332 333
        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
334
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"].apply(lambda x: Decimal(x)) + cnav_df[p_fund_id_ + "_amount"]
335 336 337

            # cnav_df[p_fund_id_ + "_profit_ratio"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: Decimal(x)) / cnav_df[
            #     p_fund_id_ + "_net_amount"].shift()
338
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
赵杰's avatar
赵杰 committed
339

340
        return cnav_df