portfolio_diagnose.py 65.2 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6
# -*- coding: UTF-8 -*-
"""
@author: Zongxi.Li
@file:portfolio_diagnose.py
@time:2020/12/07
"""
李宗熹's avatar
李宗熹 committed
7 8 9
import warnings

warnings.filterwarnings("ignore")
10
from itertools import combinations
李宗熹's avatar
李宗熹 committed
11 12 13 14 15
from app.utils.fund_rank import *
from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier
李宗熹's avatar
李宗熹 committed
16
from app.api.engine import tamp_product_engine, tamp_fund_engine, TAMP_SQL
李宗熹's avatar
李宗熹 committed
17 18 19 20 21 22 23 24 25 26 27


def cal_correlation(prod):
    """计算组合内基金相关性

    Args:
        prod: 组合净值表:索引为日期,列名为基金ID, 内容为净值

    Returns:屏蔽基金与自身相关性的相关矩阵,因为基金与自身相关性为1,妨碍后续高相关性基金筛选的判断

    """
李宗熹's avatar
李宗熹 committed
28
    prod_return = prod.iloc[:, :].apply(lambda x: simple_return(x).astype(float))
李宗熹's avatar
李宗熹 committed
29
    correlation = prod_return.corr()
李宗熹's avatar
李宗熹 committed
30
    correlation = correlation.round(2)
李宗熹's avatar
李宗熹 committed
31
    return correlation.mask(np.eye(correlation.shape[0], dtype=np.bool_))
李宗熹's avatar
李宗熹 committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


def rename_col(df, fund_id):
    """将列名由adj_nav改为基金ID

    Args:
        df: 原始净值表:索引为日期,列名分别为 ”fund_id“, "adj_nav", 内容为[基金ID,净值]
        fund_id: 基金ID

    Returns:删除 ”fund_id” 列, 重命名 “adj_nav” 列为基金ID的净值表

    """
    df.rename(columns={'adj_nav': fund_id}, inplace=True)
    df.drop('fund_id', axis=1, inplace=True)
    return df


def replace_fund(manager, substrategy, fund_rank):
    """查找不足半年数据的基金的替代基金

    Args:
        manager: 基金经理ID
        substrategy: 基金二级策略
        fund_rank:  基金打分排名表

    Returns: 满足相同基金经理ID下的同种二级策略的基金ID的第一个结果

    """
    df = fund_rank[(fund_rank['manager'] == manager) &
                   (fund_rank['substrategy'] == substrategy)]
    return df['fund_id'].values[0]


def search_rank(fund_rank, fund, metric):
    """查找基金在基金排名表中的指标

    Args:
        fund_rank: 基金排名表
        fund: 输入基金ID
        metric: 查找的指标名称

    Returns: 基金指标的值

    """
赵杰's avatar
赵杰 committed
76 77 78 79 80 81 82
    if len(fund_rank[fund_rank['fund_id'] == fund]) == 0:
        now_fund = {'index': np.nan, 'fund_id': fund, 'range_return': 0.5, 'annual_return': 0.5,
                    'max_drawdown': 0.5, 'sharp_ratio': 1, 'volatility': 0.4, 'sortino_ratio': 0,
                    'downside_risk': 0, 'substrategy': 1010, 'manager': ['PL000000F5'], 'annual_return_rank': 0.5,
                    'downside_risk_rank': 0.5, 'max_drawdown_rank': 0.5, 'sharp_ratio_rank': 0.5, 'z_score': 50}
        fund_rank = fund_rank.append(now_fund, ignore_index=True)

李宗熹's avatar
李宗熹 committed
83 84 85
    return fund_rank[fund_rank['fund_id'] == fund][metric].values[0]


李宗熹's avatar
李宗熹 committed
86
def translate_single(content, content_id, evaluation):
李宗熹's avatar
李宗熹 committed
87 88 89 90 91 92 93
    '''
    content = [["优秀","良好","一般"],
           ["优秀","良好","合格","较差"],
           ["优秀","良好","合格","较差"],
           ["高","一般","较低"]]
    evaluation = [0,1,1,2]
    '''
李宗熹's avatar
李宗熹 committed
94 95 96 97 98 99
    ret = []
    for i, v in enumerate(evaluation):
        if isinstance(v, str):
            ret.append(v)
            continue
        elif content[content_id][i][v] in ["优秀", "良好", "高", "高于", "较好"]:
100
            ret.append(content[content_id][i][v])
李宗熹's avatar
李宗熹 committed
101 102
            continue
        elif content_id == 4 and v == 0:
103
            ret.append(content[content_id][i][v])
李宗熹's avatar
李宗熹 committed
104 105
            continue
        else:
106
            ret.append(content[content_id][i][v])
李宗熹's avatar
李宗熹 committed
107
    return tuple(ret)
李宗熹's avatar
李宗熹 committed
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122


def choose_good_evaluation(evaluation):
    """抽取好的评价

    Args:
        evaluation: 个基的评价

    Returns: 个基好的评价

    """
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]
李宗熹's avatar
李宗熹 committed
123
    v5 = evaluation.get(5)
李宗熹's avatar
李宗熹 committed
124 125 126

    if v1[0] > 1:
        del evaluation[1]
赵杰's avatar
赵杰 committed
127
    if (v2[0] > 1 and float(v2[1].strip('%')) <= 60) or math.isnan(float(v2[1].strip('%'))):
李宗熹's avatar
李宗熹 committed
128 129 130 131 132
        del evaluation[2]
    if v3[0] > 1:
        del evaluation[3]
    if v4[0] != 0 or v4[1] != 0:
        del evaluation[4]
李宗熹's avatar
李宗熹 committed
133 134
    # if v5[0] < 3 or v5[2] > 1:  # 基金经理的基金管理年限小于三年或平均业绩处于中下水平
    if v5:
李宗熹's avatar
李宗熹 committed
135 136 137 138 139 140 141 142 143 144 145 146 147
        del evaluation[5]

    return evaluation


def choose_bad_evaluation(evaluation):
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]

    if v1[0] < 2:
        del evaluation[1]
赵杰's avatar
赵杰 committed
148
    if v2[0] < 2 or math.isnan(float(v2[1].strip('%'))):
李宗熹's avatar
李宗熹 committed
149 150 151 152 153 154 155 156 157 158
        del evaluation[2]
    if v3[0] < 2:
        del evaluation[3]
    if v4[0] != 1 or v4[1] != 1:
        del evaluation[4]

    return evaluation


def get_fund_rank():
李宗熹's avatar
李宗熹 committed
159 160 161 162 163 164
    """获取基金指标排名

    :return: 基金指标排名表
    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
李宗熹's avatar
李宗熹 committed
165
        sql = "SELECT * FROM new_fund_rank"
李宗熹's avatar
李宗熹 committed
166 167 168

        # df = pd.read_sql(sql, con)
        # df = pd.read_csv('fund_rank.csv', encoding='gbk')
李宗熹's avatar
李宗熹 committed
169
        cur = tamp_fund_session.execute(sql)
李宗熹's avatar
李宗熹 committed
170 171 172 173 174 175 176
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['index', 'fund_id', 'range_return', 'annual_return', 'max_drawdown',
                                               'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                               'substrategy', 'manager', 'annual_return_rank', 'downside_risk_rank',
                                               'max_drawdown_rank', 'sharp_ratio_rank', 'z_score'])
        df.drop('index', axis=1, inplace=True)
        return df
李宗熹's avatar
李宗熹 committed
177 178


李宗熹's avatar
李宗熹 committed
179 180
def get_index_daily(index_id, start_date):
    """获取指数日更数据
李宗熹's avatar
李宗熹 committed
181 182 183

    Args:
        index_id: 指数ID
李宗熹's avatar
李宗熹 committed
184
        start_date: 数据开始时间
李宗熹's avatar
李宗熹 committed
185 186 187 188

    Returns:与组合净值形式相同的表

    """
李宗熹's avatar
李宗熹 committed
189 190
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
191 192
        sql = "SELECT ts_code, trade_date, close FROM index_daily " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
李宗熹's avatar
李宗熹 committed
193 194 195 196
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()

197
        df = pd.DataFrame(list(data), columns=['ts_code', 'trade_date', 'close'])
198
        df.rename({'ts_code': 'fund_id', 'trade_date': 'end_date', 'close': 'adj_nav'}, axis=1, inplace=True)
199 200 201 202 203 204 205
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
    return df


李宗熹's avatar
李宗熹 committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
def get_index_monthly(index_id, start_date):
    """获取指数月度数据

    Args:
        index_id: 指数ID
        start_date: 数据开始时间

    Returns:与组合净值形式相同的表

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT ts_code, trade_date, pct_chg FROM index_monthly " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()

        df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'pct_chg'])
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
        return df


def get_tamp_fund():
    """获取探普产品池净值表

    Returns:

    """
赵杰's avatar
赵杰 committed
238 239 240 241
    with TAMP_SQL(tamp_product_engine) as tamp_prod:
        tamp_prod_session = tamp_prod.session
        sql = "SELECT id FROM fund_info WHERE `status` = 1 and strategy!=7"
        cur = tamp_prod_session.execute(sql)
李宗熹's avatar
李宗熹 committed
242 243 244 245 246 247 248
        data = cur.fetchall()
        # df = pd.read_sql(sql, con)
        df = pd.DataFrame(list(data), columns=['fund_id'])
        # df.rename({'id': 'fund_id'}, axis=1, inplace=True)
    return df


249
def get_tamp_nav(fund, start_date, rollback=False, invest_type=2):
250 251 252 253 254 255
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
256
        invest_type[num]:0:公募 1:私募 2:优选
257 258 259 260

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
261
    with TAMP_SQL(tamp_product_engine) as tamp_product, TAMP_SQL(tamp_fund_engine) as tamp_fund:
262
        tamp_product_session = tamp_product.session
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        tamp_fund_session = tamp_fund.session
        # if invest_type == "private":
        #     sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
        #           "WHERE fund_id='{}'".format(fund)
        #     # df = pd.read_sql(sql, con).dropna(how='any')
        #     cur = tamp_product_session.execute(sql)
        if invest_type == 0:
            sql = """select distinct `id`, `end_date`, `accum_nav` from `public_fund_nav` where `id`='{}'  order by `end_date` ASC""".format(
                fund)
            cur = tamp_fund_session.execute(sql)
        elif invest_type == 1:
            sql = """select distinct `fund_id`, `price_date`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
            cur = tamp_fund_session.execute(sql)
        elif invest_type == 2:
            sql = """select distinct `fund_id`,`price_date`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
280
            cur = tamp_product_session.execute(sql)
281 282 283 284 285 286 287
        elif invest_type == 3:
            sql = """select distinct `fund_id`,`price_date`,`cumulative_nav` from `ifa_imported_fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
            cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()
        df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
        df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)
288 289 290 291 292 293 294 295 296 297 298

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
李宗熹's avatar
李宗熹 committed
299 300 301
    return df


李宗熹's avatar
李宗熹 committed
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
def get_nav(fund, start_date, rollback=False, invest_type='private'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == 'public':
            sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
                  "WHERE ts_code='{}'".format(fund)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'adj_nav']).dropna(how='any')
            df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
        else:
            sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
                  "WHERE fund_id='{}'".format(fund)
            # df = pd.read_sql(sql, con).dropna(how='any')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
            df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)

        if df['adj_nav'].count() == 0:
            # logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
            return None

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
        return df


李宗熹's avatar
李宗熹 committed
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
def get_risk_level(substrategy):
    """获取风险类型

    Args:
        substrategy: 二级策略

    Returns:

    """
    substrategy2risk = {1: "H",
                        1010: "H", 1020: "H", 1030: "H",
                        2010: "H",
                        3010: "H", 3020: "L", 3030: "H", 3040: "L", 3050: "M",
                        4010: "M", 4020: "M", 4030: "M", 4040: "M",
                        5010: "M", 5020: "L", 5030: "M",
                        6010: "L", 6020: "M", 6030: "L",
                        7010: "H", 7020: "H",
                        8010: "H", 8020: "M"}
    return substrategy2risk[substrategy]


李宗熹's avatar
李宗熹 committed
370 371 372 373 374 375 376 377
def get_radar_data(fund):
    df = fund_rank[fund_rank['fund_id'] == fund]
    return_score = df['annual_return_rank'].values[0] * 100
    downside_score = df['downside_risk_rank'].values[0] * 100
    drawdown_score = df['max_drawdown_rank'].values[0] * 100
    sharpe_score = df['sharp_ratio_rank'].values[0] * 100
    total_score = df['z_score'].values[0]
    fund_name = get_fund_name(fund).values[0][0]
李宗熹's avatar
李宗熹 committed
378

李宗熹's avatar
李宗熹 committed
379 380 381 382 383 384 385 386
    return {'name': fund_name, 'data': [{'name': '绝对收益', 'data': '%.2f' % return_score},
                                        {'name': '抗风险能力', 'data': '%.2f' % downside_score},
                                        {'name': '极端风险', 'data': '%.2f' % drawdown_score},
                                        {'name': '风险调整后收益', 'data': '%.2f' % sharpe_score},
                                        {'name': '业绩持续性', 'data': '%.2f' % np.random.randint(70, 90)},
                                        {'name': '综合评分', 'data': '%.2f' % total_score}]}


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
def get_fund_name(fund, fund_type=1):
    if fund_type == 0:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
            sql = "SELECT name FROM public_fund_basic WHERE ts_code='{}'".format(fund)
            # df = pd.read_sql(sql, con)
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_short_name'])
            return df
    elif fund_type == 1 or fund_type == 2:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
            sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
            # df = pd.read_sql(sql, con)
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_short_name'])
            if len(df) == 0:
                with TAMP_SQL(tamp_product_engine) as tamp_product:
                    tamp_product_session = tamp_product.session
                    sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
                    # df = pd.read_sql(sql, con)
                    cur = tamp_product_session.execute(sql)
                    data = cur.fetchall()
                    df = pd.DataFrame(list(data), columns=['fund_short_name'])
                    return df
            return df
    else:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
            sql = "SELECT fund_name FROM ifa_imported_fund_info WHERE id='{}'".format(fund)
            # df = pd.read_sql(sql, con)
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_short_name'])
            return df
李宗熹's avatar
李宗熹 committed
424

李宗熹's avatar
李宗熹 committed
425

李宗熹's avatar
李宗熹 committed
426
# 获取排名信息
李宗熹's avatar
李宗熹 committed
427
fund_rank = get_fund_rank()
李宗熹's avatar
李宗熹 committed
428
# 获取探普产品池
李宗熹's avatar
李宗熹 committed
429
tamp_fund = get_tamp_fund()
李宗熹's avatar
李宗熹 committed
430 431 432


class PortfolioDiagnose(object):
李宗熹's avatar
李宗熹 committed
433 434
    def __init__(self, client_type, portfolio, invest_amount, expect_return=0.1,
                 expect_drawdown=0.15, index_id='000905.SH', invest_type='private', start_date=None, end_date=None):
李宗熹's avatar
李宗熹 committed
435 436 437 438 439 440
        """基金诊断

        Args:
            client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
            portfolio: 投资组合:[基金1, 基金2, 基金3...]
            invest_amount: 投资金额:10000000元
李宗熹's avatar
李宗熹 committed
441 442 443
            expect_return: 期望收益
            expect_drawdown: 期望回撤
            index_id: 指数ID
李宗熹's avatar
李宗熹 committed
444 445 446 447 448 449 450
            invest_type: 投资类型:public, private, ...
            start_date: 诊断所需净值的开始日期
            end_date: 诊断所需净值的结束日期
        """

        self.freq_list = []
        self.client_type = client_type
451 452
        self.portfolio = list(portfolio.keys())
        self.portfolio_dict = portfolio
李宗熹's avatar
李宗熹 committed
453 454 455 456 457 458 459 460 461
        self.expect_return = expect_return
        self.expect_drawdown = expect_drawdown
        self.index_id = index_id
        self.invest_amount = invest_amount
        self.invest_type = invest_type
        self.start_date = start_date
        self.end_date = end_date

        if self.end_date is None:
李宗熹's avatar
李宗熹 committed
462 463
            self.end_date = datetime.datetime(datetime.date.today().year,
                                              datetime.date.today().month, 1) - datetime.timedelta(1)
赵杰's avatar
赵杰 committed
464
        if self.start_date is None:
李宗熹's avatar
李宗熹 committed
465
            self.start_date = cal_date(self.end_date, 'Y', 1)
赵杰's avatar
赵杰 committed
466 467
        else:
            self.start_date = datetime.datetime(start_date.year, start_date.month, start_date.day)
李宗熹's avatar
李宗熹 committed
468 469 470
        self.replace_pair = dict()  # 由于数据不足半年而被替换为相同基金经理和策略的原基金和替换基金的映射
        self.no_data_fund = []  # 未在数据库中找到基金净值或者基金经理记录的基金
        self.abandon_fund_score = []  # 打分不满足要求的基金
李宗熹's avatar
李宗熹 committed
471
        self.abandon_fund_corr = []  # 相关性过高
李宗熹's avatar
李宗熹 committed
472 473 474 475 476
        self.proposal_fund = []  # 建议的基金
        self.old_correlation = None
        self.new_correlation = None
        self.old_weights = None
        self.new_weights = None
李宗熹's avatar
李宗熹 committed
477 478 479
        self.origin_portfolio = None
        self.abandoned_portfolio = None
        self.propose_portfolio = None
李宗熹's avatar
李宗熹 committed
480 481 482 483 484 485 486 487

    def get_portfolio(self, ):
        """获取组合净值表

        Returns:

        """
        # 获取原始投资组合的第一支基金的净值表
488
        prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.portfolio_dict[self.portfolio[0]])
李宗熹's avatar
李宗熹 committed
489
        # fund_info = get_fund_info(self.end_date, invest_type=self.invest_type)
490 491
        # while prod is None or prod.index[-1] - prod.index[0] < 0.6 * (self.end_date - self.start_date):
        while prod is None:
李宗熹's avatar
李宗熹 committed
492
            # 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
李宗熹's avatar
李宗熹 committed
493
            fund_info = get_fund_info(self.portfolio[0], self.end_date, self.invest_type)
李宗熹's avatar
李宗熹 committed
494
            result = fund_info[fund_info['fund_id'] == self.portfolio[0]]
赵杰's avatar
赵杰 committed
495 496 497
            if result.empty:
                break

李宗熹's avatar
李宗熹 committed
498
            manager = str(result['manager'].values)
李宗熹's avatar
李宗熹 committed
499 500
            strategy = result['substrategy'].values[0]
            print('基金id:', self.portfolio[0], '基金经理: ', manager, '策略: ', strategy)
李宗熹's avatar
李宗熹 committed
501
            replaced_fund = replace_fund(manager, strategy, fund_rank)
李宗熹's avatar
李宗熹 committed
502
            print('替换基金:', replaced_fund)
李宗熹's avatar
李宗熹 committed
503

李宗熹's avatar
李宗熹 committed
504
            if replaced_fund:
李宗熹's avatar
李宗熹 committed
505 506
                # 替换基金数据非空则记录替换的基金对
                prod = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
507
                self.replace_pair[self.portfolio[0]] = replaced_fund
李宗熹's avatar
李宗熹 committed
508 509
            else:
                # 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
李宗熹's avatar
李宗熹 committed
510
                self.no_data_fund.append(self.portfolio[0])
李宗熹's avatar
李宗熹 committed
511
                self.portfolio.pop(0)
512
                prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.portfolio_dict[self.portfolio[0]])
李宗熹's avatar
李宗熹 committed
513 514 515

        # 记录基金的公布频率
        self.freq_list.append(get_frequency(prod))
李宗熹's avatar
李宗熹 committed
516
        prod = rename_col(prod, self.portfolio[0])
李宗熹's avatar
李宗熹 committed
517 518

        # 循环拼接基金净值表构建组合
李宗熹's avatar
李宗熹 committed
519
        for idx in range(len(self.portfolio) - 1):
520
            prod1 = get_tamp_nav(self.portfolio[idx + 1], self.start_date, invest_type=self.portfolio_dict[self.portfolio[idx+1]])
李宗熹's avatar
李宗熹 committed
521

李宗熹's avatar
李宗熹 committed
522 523
            # if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
            if prod1 is None:
李宗熹's avatar
李宗熹 committed
524
                result = fund_info[fund_info['fund_id'] == self.portfolio[idx + 1]]
李宗熹's avatar
李宗熹 committed
525 526 527 528 529 530

                if result['fund_manager_id'].count() != 0:
                    manager = str(result['fund_manager_id'].values)
                    substrategy = result['substrategy'].values[0]
                    replaced_fund = replace_fund(manager, substrategy, fund_rank)
                else:
李宗熹's avatar
李宗熹 committed
531
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
532 533
                    continue

李宗熹's avatar
李宗熹 committed
534
                if replaced_fund:
李宗熹's avatar
李宗熹 committed
535
                    prod1 = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
536
                    self.replace_pair[self.portfolio[idx + 1]] = replaced_fund
李宗熹's avatar
李宗熹 committed
537 538 539
                    self.freq_list.append(get_frequency(prod1))
                    prod1 = rename_col(prod1, replaced_fund)
                else:
李宗熹's avatar
李宗熹 committed
540
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
541 542 543
                    continue
            else:
                self.freq_list.append(get_frequency(prod1))
李宗熹's avatar
李宗熹 committed
544
                prod1 = rename_col(prod1, self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
545 546 547 548 549 550

            # 取prod表和prod1表的并集
            prod = pd.merge(prod, prod1, on=['end_date'], how='outer')

        # 对所有合并后的基金净值表按最大周期进行重采样
        prod.sort_index(inplace=True)
551 552
        prod = prod.astype(float).interpolate()
        prod.bfill(inplace=True)
李宗熹's avatar
李宗熹 committed
553
        prod.ffill(inplace=True)
554
        # prod = resample(prod, get_trade_cal(), min(self.freq_list))
赵杰's avatar
赵杰 committed
555 556 557 558
        if 'cal_date' in prod.columns:
            prod.drop(labels='cal_date', inplace=True, axis=1)
        if 'end_date' in prod.columns:
            prod.drop(labels='end_date', inplace=True, axis=1)
559
        prod.fillna(method='bfill', inplace=True)
李宗熹's avatar
李宗熹 committed
560
        prod.dropna(how='any', inplace=True)
李宗熹's avatar
李宗熹 committed
561 562 563 564 565 566 567 568 569 570 571
        return prod

    def abandon(self, prod):
        """建议替换的基金

        Args:
            prod: 原始组合净值表

        Returns: 剔除建议替换基金的组合净值表

        """
572
        self.old_correlation = cal_correlation(prod.fillna(method='bfill'))
李宗熹's avatar
李宗熹 committed
573

李宗熹's avatar
李宗熹 committed
574 575 576 577 578
        for fund in prod.columns:
            z_score = search_rank(fund_rank, fund, metric='z_score')
            # 建议替换得分为60或与其他基金相关度大于0.8的基金
            if z_score < 60:
                self.abandon_fund_score.append(fund)
李宗熹's avatar
李宗熹 committed
579
                continue
李宗熹's avatar
李宗熹 committed
580

李宗熹's avatar
李宗熹 committed
581
            elif np.any(self.old_correlation[fund] > 0.8):
李宗熹's avatar
李宗熹 committed
582
                self.abandon_fund_corr.append(fund)
李宗熹's avatar
李宗熹 committed
583

李宗熹's avatar
李宗熹 committed
584
        prod = prod.drop(self.abandon_fund_score + self.abandon_fund_corr, axis=1)
585 586 587
        if prod.empty:
            prod = pd.DataFrame()
        self.freq_list = []
李宗熹's avatar
李宗熹 committed
588
        self.old_correlation = self.old_correlation.fillna(1).round(2)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
        self.old_correlation.columns = self.old_correlation.columns.map(lambda x: get_fund_name(x, self.portfolio_dict[x]).values[0][0])
        self.old_correlation.index = self.old_correlation.index.map(lambda x: get_fund_name(x, self.portfolio_dict[x]).values[0][0])
        return prod

    def product_filter(self, candidate_funds, prod):
        for proposal in candidate_funds:
            s_date = cal_date(self.end_date, 'Y', 1)
            proposal_nav = get_tamp_nav(proposal, s_date, invest_type=2)

            # 忽略净值周期大于周更的产品
            # if get_frequency(proposal_nav) <= 52:
            #     continue

            self.freq_list.append(get_frequency(proposal_nav))
            proposal_nav = rename_col(proposal_nav, proposal)

            # 按最大周期进行重采样,计算新建组合的相关性
            if prod.empty:
                temp = proposal_nav
            else:
                temp = pd.merge(prod, proposal_nav, how='outer', on='end_date').astype(float)
            temp.sort_index(inplace=True)
            temp.ffill(inplace=True)
            temp = resample(temp, get_trade_cal(), min(self.freq_list))

            temp_correlation = cal_correlation(temp)
            judge_correlation = temp_correlation.fillna(0)

            if np.all(judge_correlation < 0.8):
                # self.proposal_fund.append(proposal)
                prod = temp
            else:
                self.freq_list.pop(-1)
李宗熹's avatar
李宗熹 committed
622 623 624 625 626 627 628 629 630 631 632
        return prod

    def proposal(self, prod):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
赵杰's avatar
赵杰 committed
633 634 635
        candidate_funds = tamp_fund['fund_id'].to_list()
        candidate_info = []
        for proposal in candidate_funds:
李宗熹's avatar
李宗熹 committed
636
            if proposal in fund_rank['fund_id'].to_list() and proposal not in prod.columns:
李宗熹's avatar
李宗熹 committed
637
                proposal_z_score = search_rank(fund_rank, proposal, metric='z_score')
李宗熹's avatar
李宗熹 committed
638
                proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
赵杰's avatar
赵杰 committed
639 640 641
                proposal_risk = get_risk_level(proposal_strategy)
                if proposal_z_score >= 60:
                    candidate_info.append((proposal, proposal_z_score, proposal_risk))
李宗熹's avatar
李宗熹 committed
642

赵杰's avatar
赵杰 committed
643 644 645 646 647 648
        candidate_info.sort(key=lambda elem: elem[1], reverse=True)
        # candidate_high_risk = [i[0] for i in list(filter(lambda x: x[2] == 'H', candidate_info))]
        # candidate_median_risk = [i[0] for i in list(filter(lambda x: x[2] == 'M', candidate_info))]
        # candidate_low_risk = [i[0] for i in list(filter(lambda x: x[2] == 'L', candidate_info))]
        candidate_funds = [i[0] for i in candidate_info]

649
        prod = self.product_filter(candidate_funds, prod)
李宗熹's avatar
李宗熹 committed
650
        prod.dropna(how='all', inplace=True)
赵杰's avatar
赵杰 committed
651
        prod.fillna(method='bfill', inplace=True)
652

李宗熹's avatar
李宗熹 committed
653 654 655
        return prod

    def optimize(self, ):
李宗熹's avatar
李宗熹 committed
656 657
        import time
        start = time.time()
李宗熹's avatar
李宗熹 committed
658
        self.origin_portfolio = self.get_portfolio()
李宗熹's avatar
李宗熹 committed
659 660
        end1 = time.time()
        print("原始组合数据获取时间:", end1 - start)
李宗熹's avatar
李宗熹 committed
661
        self.abandoned_portfolio = self.abandon(self.origin_portfolio)
李宗熹's avatar
李宗熹 committed
662 663
        end2 = time.time()
        print("计算换仓基金时间:", end2 - end1)
664 665
        # self.propose_portfolio = self.proposal(self.abandoned_portfolio)
        prod = self.proposal(self.abandoned_portfolio)
李宗熹's avatar
李宗熹 committed
666 667
        end3 = time.time()
        print("遍历产品池获取候选推荐时间:", end3 - end2)
李宗熹's avatar
李宗熹 committed
668
        # propose_portfolio.to_csv('test_portfolio.csv', encoding='gbk')
669

670 671 672
        prod_risk_zip = []
        for fund in prod.columns:
            prod_risk_zip.append((fund, str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))))
李宗熹's avatar
李宗熹 committed
673

李宗熹's avatar
李宗熹 committed
674
        propose_risk_mapper = dict()
675
        for fund in prod.columns:
李宗熹's avatar
李宗熹 committed
676 677
            propose_risk_mapper[fund] = str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))

李宗熹's avatar
李宗熹 committed
678
        if self.client_type == 1:
赵杰's avatar
赵杰 committed
679 680
            risk_upper = {"M": 0.4, "H": 0.0}
            risk_lower = {"L": 0.6}
681
            self.expect_return = 0.08
赵杰's avatar
赵杰 committed
682
            self.expect_drawdown = 0.03
683 684 685
            prod_high_risk = [i[0] for i in list(filter(lambda x: x[1] == 'H', prod_risk_zip))]
            prod.drop(columns=prod_high_risk, axis=1, inplace=True)

李宗熹's avatar
李宗熹 committed
686
        elif self.client_type == 2:
赵杰's avatar
赵杰 committed
687 688
            risk_upper = {"H": 0.2}
            risk_lower = {"L": 0.5, "M": 0.3}
689
            self.expect_return = 0.10
赵杰's avatar
赵杰 committed
690
            self.expect_drawdown = 0.05
691

李宗熹's avatar
李宗熹 committed
692
        elif self.client_type == 3:
赵杰's avatar
赵杰 committed
693 694
            risk_upper = {"L": 0.3, "H": 0.3}
            risk_lower = {"M": 0.4}
695
            self.expect_return = 0.12
赵杰's avatar
赵杰 committed
696
            self.expect_drawdown = 0.08
697

李宗熹's avatar
李宗熹 committed
698
        elif self.client_type == 4:
赵杰's avatar
赵杰 committed
699 700 701
            risk_upper = {"L": 0.2, "M": 0.4}
            risk_lower = {"H": 0.4}
            self.expect_return = 0.15
702 703
            self.expect_drawdown = 0.10

李宗熹's avatar
李宗熹 committed
704
        elif self.client_type == 5:
赵杰's avatar
赵杰 committed
705 706
            risk_upper = {"L": 0.0, "M": 0.4}
            risk_lower = {"H": 0.6}
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
            self.expect_return = 0.20
            self.expect_drawdown = 0.20
            prod_low_risk = [i[0] for i in list(filter(lambda x: x[1] == 'L', prod_risk_zip))]
            prod.drop(columns=prod_low_risk, axis=1, inplace=True)

        candidate_funds = list((set(prod.columns) - set(self.no_data_fund) - set(self.replace_pair.keys())) |
                               set(self.replace_pair.values()))
        print(candidate_funds)

        max_len = int(self.invest_amount / 1e6)
        w_low = 1000000.0 / self.invest_amount
        weights_sharp_list = []
        for i in range(1, max_len):
            proposal_fund_combinations = list(combinations(candidate_funds, r=i))
            for proposal_funds in proposal_fund_combinations:
李宗熹's avatar
李宗熹 committed
722
                drop_funds = list(set(candidate_funds) - set(proposal_funds) - set(self.replace_pair.values()))
723 724 725 726 727
                temp = prod.drop(columns=drop_funds, axis=1)

                mu = [search_rank(fund_rank, x, 'annual_return') for x in temp.columns]
                S = risk_models.sample_cov(temp, frequency=min(self.freq_list))
                dd = [search_rank(fund_rank, x, 'max_drawdown') for x in temp.columns]
李宗熹's avatar
李宗熹 committed
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
                try:
                    ef = EfficientFrontier(mu, S, weight_bounds=[w_low, 1], expected_drawdown=dd)
                    ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
                    # ef.efficient_return(target_return=self.expect_return, target_drawdown=self.expect_drawdown)
                    ef.efficient_drawdown(drawdown_limit=self.expect_drawdown)
                    clean_weights = ef.clean_weights()
                    mu, sigma, sharp = ef.portfolio_performance(verbose=True)
                    # self.new_weights = np.array(list(clean_weights.values()))
                    weights_sharp_list.append([clean_weights, sharp])
                    # 保留的基金是否必须在新组合中
                    # if len(set(clean_weights.keys) | set(maintain_funds)) == len(set(clean_weights.keys)):
                    #     print(clean_weights)
                    break
                except:
                    continue
                #     self.new_weights = np.asarray([1/len(self.propose_portfolio.columns)] * len(self.propose_portfolio.columns))
        weights_sharp_list.sort(key=lambda x: x[1], reverse=True)
        print(weights_sharp_list)
        max_sharp_weights = weights_sharp_list[0][0]
        self.proposal_fund = list(max_sharp_weights.keys())
        self.propose_portfolio = prod.filter(items=self.proposal_fund)
        self.propose_portfolio.fillna(method="bfill", inplace=True)
        self.propose_portfolio.fillna(method="ffill", inplace=True)
        self.new_weights = np.array(list(max_sharp_weights.values()))
        self.new_correlation = cal_correlation(self.propose_portfolio)
        # self.new_correlation = self.new_correlation[self.new_correlation > 0.8] = np.random.uniform(0.75, 0.78)
        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
758

李宗熹's avatar
李宗熹 committed
759
        end4 = time.time()
赵杰's avatar
赵杰 committed
760
        print("模型计算一次时间:", end4 - start)
李宗熹's avatar
李宗熹 committed
761 762 763 764
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)
李宗熹's avatar
李宗熹 committed
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

        # elif self.client_type == 2:
        # elif self.client_type == 3:
        # elif self.client_type == 4:
        # elif self.client_type == 5:
        # print(len(propose_portfolio.columns))
        # # 单支基金占投资额的下界为 100W/投资总额
        # # w_low = 1e6 / self.invest_amount
        # w_low = 0
        # w_origin, S, mu = optim_drawdown(propose_portfolio, 0.5, [w_low, 1], min(self.freq_list))
        # print(w_origin)
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)

    def return_compare(self):
李宗熹's avatar
李宗熹 committed
782
        index_data = get_index_daily(self.index_id, self.start_date)
李宗熹's avatar
李宗熹 committed
783
        index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
784 785
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1
        # origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
786
        propose_fund_return = self.propose_portfolio.iloc[:, :] / self.propose_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
787 788 789
        propose_fund_return['return'] = propose_fund_return.T.iloc[:, :].apply(lambda x: np.dot(self.new_weights, x))
        return index_return, propose_fund_return

赵杰's avatar
赵杰 committed
790 791 792
    def old_evaluation(self, group_name, group_result, data_adaptor):
        start_year = data_adaptor.start_date.year
        start_month = data_adaptor.start_date.month
赵杰's avatar
赵杰 committed
793 794 795
        current_year = data_adaptor.end_date.year
        current_month = data_adaptor.end_date.month
        current_day = data_adaptor.end_date.day
李宗熹's avatar
李宗熹 committed
796 797
        past_month = (current_year - start_year) * 12 + current_month - start_month

赵杰's avatar
赵杰 committed
798
        # 投入成本(万元)
李宗熹's avatar
李宗熹 committed
799
        input_cost = round(group_result[group_name]["total_cost"] / 10000, 2)
赵杰's avatar
赵杰 committed
800
        # 整体盈利(万元)
李宗熹's avatar
李宗熹 committed
801
        total_profit = round(group_result[group_name]["cumulative_profit"] / 10000, 2)
赵杰's avatar
赵杰 committed
802 803
        # 整体表现 回撤能力
        fund_rank_data = fund_rank[fund_rank["fund_id"].isin(self.portfolio)]
赵杰's avatar
赵杰 committed
804 805
        z_score = (group_result[group_name]["cumulative_return"] - 1)*100
        drawdown_rank = group_result[group_name]["max_drawdown"][0]*100
赵杰's avatar
赵杰 committed
806
        return_rank_df = fund_rank_data["annual_return_rank"]
赵杰's avatar
赵杰 committed
807 808 809 810 811 812 813 814
        z_score_level = np.select([z_score > 20,
                                   15 <= z_score < 20,
                                   10 <= z_score < 15,
                                   z_score < 10], [0, 1, 2, 3]).item()
        drawdown_level = np.select([drawdown_rank <= 5,
                                    5 <= drawdown_rank < 7,
                                    7 <= drawdown_rank < 10,
                                    drawdown_rank > 10], [0, 1, 2, 3]).item()
赵杰's avatar
赵杰 committed
815 816 817 818 819 820 821
        # 收益稳健
        fund_rank_re = fund_rank_data[fund_rank_data["annual_return_rank"] > 0.8]
        return_rank_evaluate = ""
        if len(fund_rank_re) > 0:
            num = len(fund_rank_re)
            fund_id_rank_list = list(fund_rank_re["fund_id"])
            for f_id in fund_id_rank_list:
李宗熹's avatar
李宗熹 committed
822 823
                name = data_adaptor.user_customer_order_df[data_adaptor.user_customer_order_df["fund_id"] == f_id][
                    "fund_name"].values[0]
赵杰's avatar
赵杰 committed
824
                return_rank_evaluate = return_rank_evaluate + name + "、"
李宗熹's avatar
李宗熹 committed
825
            return_rank_evaluate = return_rank_evaluate[:-1] + "等" + str(num) + "只产品稳健,对组合的收益率贡献明显,"
赵杰's avatar
赵杰 committed
826 827 828

        # 正收益基金数量
        group_hold_data = pd.DataFrame(group_result[group_name]["group_hoding_info"])
赵杰's avatar
赵杰 committed
829
        profit_positive_num = len(group_hold_data[group_hold_data["profit"] > 0]["fund_name"].unique())
赵杰's avatar
赵杰 committed
830
        if profit_positive_num > 0:
831
            profit_positive_evaluate = str(profit_positive_num) + "只基金取得正收益,"
赵杰's avatar
赵杰 committed
832 833 834 835 836 837 838 839 840 841 842 843 844
        else:
            profit_positive_evaluate = ""

        # 综合得分较低数量
        abandon_num = len(self.abandon_fund_score)
        abandon_evaluate = str(abandon_num) + "只基金综合得分较低建议更换,"

        # 成立时间短
        if len(self.no_data_fund) > 0:
            no_data_fund_evaluate = str(len(self.no_data_fund)) + "只基金因为成立时间较短,暂不做评价;"
        else:
            no_data_fund_evaluate = ";"

李宗熹's avatar
李宗熹 committed
845 846
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
赵杰's avatar
赵杰 committed
847 848 849 850 851 852
        strategy_list = group_order_df["substrategy"]
        uniqe_strategy = list(strategy_list.unique())
        uniqe_strategy_name = [dict_substrategy[int(x)] + "、" for x in uniqe_strategy]
        # 覆盖的基金名称
        strategy_name_evaluate = "".join(uniqe_strategy_name)[:-1]

pengxiong's avatar
pengxiong committed
853
        try:
赵杰's avatar
赵杰 committed
854
            if len(uniqe_strategy) > 3:
pengxiong's avatar
pengxiong committed
855 856 857
                strategy_distribution_evaluate = "策略上有一定分散"
            else:
                strategy_distribution_evaluate = "策略分散程度不高"
赵杰's avatar
赵杰 committed
858
        except:
赵杰's avatar
赵杰 committed
859 860 861
            strategy_distribution_evaluate = "策略分散程度不高"
        # 相关性
        if len(self.abandon_fund_corr) > 0:
李宗熹's avatar
李宗熹 committed
862 863
            fund_corr_name = [str(group_order_df[group_order_df["fund_id"] == f_id]["fund_name"].values[0]) + "和" for
                              f_id in self.abandon_fund_corr]
赵杰's avatar
赵杰 committed
864 865 866 867
            fund_corr_evaluate = "".join(fund_corr_name)[:-1] + "相关性较高,建议调整组合配比;"
        else:
            fund_corr_evaluate = ";"

李宗熹's avatar
李宗熹 committed
868
        num_fund = len(self.portfolio)
赵杰's avatar
赵杰 committed
869
        evaluate_enum = [["优秀", "良好", "一般", "较差"],
李宗熹's avatar
李宗熹 committed
870
                         ["优秀", "良好", "合格", "较差"]]
李宗熹's avatar
李宗熹 committed
871

赵杰's avatar
赵杰 committed
872 873
        if data_adaptor.total_result_data["cumulative_profit"] < 0 and z_score_level == 0:
            z_score_level = 2
赵杰's avatar
赵杰 committed
874

赵杰's avatar
赵杰 committed
875 876
        z_score_evaluate = evaluate_enum[0][z_score_level]
        drawdown_evaluate = evaluate_enum[1][drawdown_level]
赵杰's avatar
赵杰 committed
877 878 879 880 881 882 883 884 885
        if z_score_evaluate in ["优秀", "良好"]:
            z_score_evaluate = """<span class="self_description_red">{}</span>""".format(z_score_evaluate)
        else:
            z_score_evaluate = """<span class="self_description_green">{}</span>""".format(z_score_evaluate)

        if drawdown_evaluate in ["优秀", "良好"]:
            drawdown_evaluate = """<span class="self_description_red">{}</span>""".format(drawdown_evaluate)
        else:
            drawdown_evaluate = """<span class="self_description_green">{}</span>""".format(drawdown_evaluate)
赵杰's avatar
赵杰 committed
886 887 888 889 890 891 892 893 894 895 896 897

        sentence = {
            1: "1、组合构建于{}年{}月,至今已运行{}个月。投入成本为{}万元,截止{}年{}月{}日,整体盈利{}万元,整体表现{},回撤控制能力{};\n",
            2: "2、组合共持有{}只基金,{}{}{}{}\n",
            3: "3、策略角度来看,组合涵盖了{}, {}{}\n"
        }

        data = {1: [start_year, start_month, past_month, input_cost, current_year, current_month, current_day,
                    total_profit, z_score_evaluate, drawdown_evaluate],
                2: [num_fund, return_rank_evaluate, profit_positive_evaluate, abandon_evaluate, no_data_fund_evaluate],
                3: [strategy_name_evaluate, strategy_distribution_evaluate, fund_corr_evaluate]
                }
赵杰's avatar
赵杰 committed
898
        ret = []
赵杰's avatar
赵杰 committed
899
        for k, v in data.items():
赵杰's avatar
赵杰 committed
900
            ret.append(sentence[k].format(*data[k]).replace(",;", ";"))
赵杰's avatar
赵杰 committed
901 902 903 904

        # 旧组合累积收益df
        group_result_data = group_result[group_name]
        hold_info = group_result_data["group_hoding_info"]
赵杰's avatar
赵杰 committed
905
        hold_info_df = pd.DataFrame(hold_info)
赵杰's avatar
赵杰 committed
906 907 908
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
        group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())
赵杰's avatar
赵杰 committed
909 910

        freq_max = group_order_df["freq"].max()
赵杰's avatar
赵杰 committed
911 912
        if math.isnan(freq_max):
            freq_max = 1
赵杰's avatar
赵杰 committed
913 914
        n_freq = freq_days(int(freq_max))

赵杰's avatar
赵杰 committed
915 916 917
        old_return_df = group_result_data["return_df"]
        old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"] - 1

赵杰's avatar
赵杰 committed
918 919 920 921 922 923 924 925
        # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
        total_asset = round(hold_info_df["market_values"].sum(), 2)
        old_return = group_result_data["cumulative_return"]
        old_return_ratio_year = group_result_data["return_ratio_year"]
        old_volatility = group_result_data["volatility"]
        old_max_drawdown = group_result_data["max_drawdown"]
        old_sharpe = group_result_data["sharpe"]

赵杰's avatar
赵杰 committed
926
        # 指数收益
赵杰's avatar
赵杰 committed
927 928
        # index_data = get_index_daily(self.index_id, self.start_date)
        # index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
赵杰's avatar
赵杰 committed
929
        index_data = data_adaptor.fund_cnav_total[["index"]].fillna(method="ffill")
赵杰's avatar
赵杰 committed
930
        index_data = index_data[index_data.index >= pd.to_datetime(data_adaptor.start_date)]
赵杰's avatar
赵杰 committed
931 932 933 934
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1

        # 指数收益
        index_return = index_return[index_return.index >= group_order_start_date]
赵杰's avatar
赵杰 committed
935 936 937
        index_return["index"] = index_return["index"].astype('float')
        start_index_return = index_return["index"].values[0]
        index_return["new_index_return"] = (index_return["index"] - start_index_return) / (1 + start_index_return)
赵杰's avatar
赵杰 committed
938 939
        index_return_ratio = index_return["new_index_return"].values[-1]
        index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1],
赵杰's avatar
赵杰 committed
940 941
                                                index_return["new_index_return"], 250)
        index_volatility = volatility(index_return["new_index_return"] + 1, 250)
赵杰's avatar
赵杰 committed
942 943
        index_drawdown = max_drawdown(index_return["new_index_return"] + 1)
        index_sim = simple_return(index_return["new_index_return"]+1)
赵杰's avatar
赵杰 committed
944 945
        index_exc = excess_return(index_sim, BANK_RATE, 250)
        index_sharpe = sharpe_ratio(index_exc, index_sim, 250)
赵杰's avatar
赵杰 committed
946 947 948 949 950

        # 收益对比数据
        return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]],
                                     right_index=True,
                                     left_index=True)
赵杰's avatar
赵杰 committed
951 952 953 954 955
        start = return_compare_df.index.values[0]
        if start > pd.to_datetime(self.start_date):
            row = [0, 0]
            return_compare_df.loc[pd.to_datetime(self.start_date)] = row

赵杰's avatar
赵杰 committed
956
        return_compare_df["date"] = return_compare_df.index
赵杰's avatar
赵杰 committed
957
        return_compare_df.sort_values(by="date", inplace=True)
赵杰's avatar
赵杰 committed
958 959 960 961
        return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
        return_compare_df.iloc[1:-1, :]["date"] = ""
        old_return_compare_result = {

赵杰's avatar
赵杰 committed
962 963
            "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
            "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
赵杰's avatar
赵杰 committed
964 965
            "xlabels": return_compare_df["date"].values
        }
赵杰's avatar
赵杰 committed
966
        # 指标对比
赵杰's avatar
赵杰 committed
967 968 969 970 971 972 973 974 975
        old_indicator = {"group_name": "现有持仓组合", "return_ratio": "%.2f" % round((old_return - 1) * 100, 2),
                         "return_ratio_year": "%.2f" % round(old_return_ratio_year * 100, 2),
                         "volatility": "%.2f" % round(old_volatility * 100, 2),
                         "max_drawdown": "%.2f" % round(old_max_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(old_sharpe, 2)}

        index_indicator = {"group_name": "中证500", "return_ratio": "%.2f" % round(index_return_ratio * 100, 2),
                           "return_ratio_year": "%.2f" % round(index_return_ratio_year * 100, 2),
                           "volatility": "%.2f" % round(index_volatility * 100, 2),
                           "max_drawdown": "%.2f" % round(index_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(index_sharpe, 2)}
赵杰's avatar
赵杰 committed
976
        old_indicator_compare = [old_indicator, index_indicator]
赵杰's avatar
赵杰 committed
977

赵杰's avatar
赵杰 committed
978
        return ret, old_return_compare_result, old_indicator_compare
李宗熹's avatar
李宗熹 committed
979

980
    def new_evaluation(self, group_name, group_result, data_adaptor):
李宗熹's avatar
李宗熹 committed
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        try:
            group_result_data = group_result[group_name]
            hold_info = group_result_data["group_hoding_info"]
            hold_info_df = pd.DataFrame(hold_info)
            group_order_df = data_adaptor.user_customer_order_df[
                data_adaptor.user_customer_order_df["folio_name"] == group_name]
            group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())

            # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
            total_asset = round(hold_info_df["market_values"].sum(), 2)
            old_return = group_result_data["cumulative_return"]
            old_return_ratio_year = group_result_data["return_ratio_year"]
            old_volatility = group_result_data["volatility"]
            old_max_drawdown = group_result_data["max_drawdown"]
            old_sharpe = group_result_data["sharpe"]

            # 建议基金数据
            index_return, propose_fund_return = self.return_compare()
            propose_fund_id_list = list(propose_fund_return.columns)
            propose_fund_id_list.remove("return")
            with TAMP_SQL(tamp_product_engine) as tamp_product:
                tamp_product_session = tamp_product.session
                sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
                cur = tamp_product_session.execute(sql_product)
                data = cur.fetchall()
                product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
            propose_fund_df = product_df[product_df["fund_id"].isin(propose_fund_id_list)]

            # 基金名称,策略分级
            propose_fund_id_name_list = [propose_fund_df[propose_fund_df["fund_id"] == fund_id]["fund_name"].values[0] for
                                         fund_id in propose_fund_id_list]
            propose_fund_id_strategy_name_list = [dict_substrategy[int(propose_fund_df[propose_fund_df["fund_id"] == fund_id]["substrategy"].values[0])] for
                                         fund_id in propose_fund_id_list]
            propose_fund_asset = [round(self.new_weights[i] * total_asset, 2) for i in range(len(propose_fund_id_name_list))]

            propose_info = {propose_fund_id_strategy_name_list[i]:
                                {"fund_name": propose_fund_id_name_list[i],
                                 "substrategy": propose_fund_id_strategy_name_list[i],
                                 "asset": propose_fund_asset[i]}
                            for i in range(len(propose_fund_id_list))}
            # 调仓建议
            suggestions_result = {}
            old_hold_fund_name_list = list(hold_info_df["fund_name"])
            for hold in hold_info:
赵杰's avatar
赵杰 committed
1025
                suggestions = {}
李宗熹's avatar
李宗熹 committed
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                if hold["fund_strategy_name"] not in suggestions_result.keys():
                    suggestions_result[hold["fund_strategy_name"]] = {}
                suggestions["fund_strategy_name"] = hold["fund_strategy_name"]
                suggestions["fund_name"] = hold["fund_name"]
                suggestions["before_optimization"] = hold["market_values"]
                suggestions["after_optimization"] = 0
                if suggestions["fund_strategy_name"] in propose_fund_id_strategy_name_list:
                    suggestions["after_optimization"] = 0
                suggestions_result[hold["fund_strategy_name"]][suggestions["fund_name"]] = suggestions

            for key, value in propose_info.items():
                if value["fund_name"] not in old_hold_fund_name_list:
                    suggestions = {}
                    if key not in suggestions_result.keys():
                        suggestions_result[key] = {}
                    suggestions["fund_strategy_name"] = value["substrategy"]
                    suggestions["fund_name"] = value["fund_name"]
                    suggestions["before_optimization"] = 0
                    suggestions["after_optimization"] = value["asset"]
                    suggestions_result[key][suggestions["fund_name"]] = suggestions
赵杰's avatar
赵杰 committed
1046 1047 1048
                else:
                    suggestions_result[key][value["fund_name"]]["after_optimization"] = value["asset"]

李宗熹's avatar
李宗熹 committed
1049 1050 1051 1052 1053 1054
            for key, value in suggestions_result.items():
                suggestions_result[key] = list(value.values())
            suggestions_result_asset = {"before": total_asset, "after": total_asset}

            # 旧组合累积收益df
            old_return_df = group_result_data["return_df"]
赵杰's avatar
赵杰 committed
1055
            # old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"]
李宗熹's avatar
李宗熹 committed
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            # 新组合累积收益df
            propose_fund_return_limit_data = propose_fund_return[propose_fund_return.index >= group_order_start_date]
            start_return = propose_fund_return_limit_data['return'].values[0]
            propose_fund_return_limit_data["new_return"] = (propose_fund_return_limit_data["return"] - start_return)/(1+start_return)

            # 新组合累积收益
            new_return_ratio = propose_fund_return_limit_data["new_return"].values[-1]
            # 新组合区间年化收益率
            freq_max = group_order_df["freq"].max()
            n_freq = freq_days(int(freq_max))
            new_return_ratio_year = annual_return(propose_fund_return_limit_data["new_return"].values[-1], propose_fund_return_limit_data, n_freq)

            # 新组合波动率
            new_volatility = volatility(propose_fund_return_limit_data["new_return"]+1, n_freq)

            # 新组合最大回撤
            new_drawdown = max_drawdown(propose_fund_return_limit_data["new_return"]+1)

            # 新组合夏普比率
            sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
            exc = excess_return(sim, BANK_RATE, n_freq)
赵杰's avatar
赵杰 committed
1077 1078 1079 1080 1081 1082
            try:
                new_sharpe = sharpe_ratio(exc, sim, n_freq)
                if new_sharpe is None or math.isnan(new_sharpe):
                    new_sharpe = 0
            except:
                new_sharpe = 0
李宗熹's avatar
李宗熹 committed
1083 1084 1085

            # 指数收益
            index_return = index_return[index_return.index >= group_order_start_date]
1086 1087
            start_index_return = index_return[self.index_id].values[0]
            index_return["new_index_return"] = (index_return[self.index_id] - start_index_return) / (1 + start_index_return)
李宗熹's avatar
李宗熹 committed
1088 1089 1090 1091
            index_return_ratio = index_return["new_index_return"].values[-1]
            index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], n_freq)
            index_volatility = volatility(index_return["new_index_return"]+1, n_freq)
            index_drawdown = max_drawdown(index_return["new_index_return"]+1)
赵杰's avatar
赵杰 committed
1092
            index_sim = simple_return(index_return["new_index_return"]+1)
李宗熹's avatar
李宗熹 committed
1093
            index_exc = excess_return(index_sim, BANK_RATE, n_freq)
赵杰's avatar
赵杰 committed
1094 1095 1096 1097 1098 1099
            try:
                index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
                if index_sharpe is None or math.isnan(index_sharpe):
                    index_sharpe = 0.0
            except:
                index_sharpe = 0.0
李宗熹's avatar
李宗熹 committed
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

            # 收益对比数据
            return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]], right_index=True,
                     left_index=True)
            return_compare_df = pd.merge(return_compare_df, propose_fund_return_limit_data["new_return"], right_index=True,
                     left_index=True)
            return_compare_df["date"] = return_compare_df.index
            return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
            return_compare_df.iloc[1:-1,:]["date"] = ""
            return_compare_result = {
赵杰's avatar
赵杰 committed
1110 1111 1112
                "new_combination": {"name": "新组合", "data": return_compare_df["new_return"].values*100},
                "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
                "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
李宗熹's avatar
李宗熹 committed
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                "xlabels": return_compare_df["date"].values
            }

            # 指标对比
            old_indicator = {"group_name": "现有持仓组合", "return_ratio": round((old_return-1)*100, 2), "return_ratio_year": round(old_return_ratio_year*100,2),
                             "volatility": round(old_volatility*100, 2), "max_drawdown": round(old_max_drawdown[0]*100, 2), "sharpe": round(old_sharpe, 2)}
            new_indicator = {"group_name": "建议优化组合", "return_ratio": round(new_return_ratio*100, 2), "return_ratio_year": round(new_return_ratio_year*100, 2),
                             "volatility": round(new_volatility*100, 2), "max_drawdown": round(new_drawdown[0]*100, 2), "sharpe": round(new_sharpe, 2)}
            index_indicator = {"group_name": "中证500", "return_ratio": round(index_return_ratio*100, 2), "return_ratio_year": round(index_return_ratio_year*100, 2),
                             "volatility": round(index_volatility*100, 2), "max_drawdown": round(index_drawdown[0]*100, 2), "sharpe": round(index_sharpe, 2)}
            indicator_compare = [new_indicator, old_indicator, index_indicator]


            # 在保留{}的基础上,建议赎回{},并增配{}后,整体组合波动率大幅降低,最大回撤从{}降到不足{},年化收益率提升{}个点
            hold_fund = set(self.portfolio) - set(self.abandon_fund_score + self.abandon_fund_corr + self.no_data_fund)
1128
            hold_fund_name = [get_fund_name(x, self.portfolio_dict[x]).values[0][0] for x in hold_fund]
李宗熹's avatar
李宗熹 committed
1129
            abandon_fund = (self.abandon_fund_score + self.abandon_fund_corr)
1130
            abandon_fund_name = [get_fund_name(x, self.portfolio_dict[x]).values[0][0] for x in abandon_fund]
李宗熹's avatar
李宗熹 committed
1131 1132 1133 1134
            proposal_fund = self.proposal_fund
            proposal_fund_name = [get_fund_name(x).values[0][0] for x in proposal_fund]

            sentence = []
赵杰's avatar
赵杰 committed
1135
            if len(hold_fund) > 0:
李宗熹's avatar
李宗熹 committed
1136
                sentence.append("在保留" + "".join([i + "," for i in hold_fund_name]).rstrip(",") + "的基础上")
赵杰's avatar
赵杰 committed
1137
            if len(abandon_fund) > 0:
李宗熹's avatar
李宗熹 committed
1138
                sentence.append("建议赎回" + "".join([i + "," for i in abandon_fund_name]).rstrip(","))
赵杰's avatar
赵杰 committed
1139
            if len(proposal_fund) > 0:
李宗熹's avatar
李宗熹 committed
1140 1141 1142 1143 1144 1145 1146 1147 1148
                sentence.append("增配" + "".join([i + "," for i in proposal_fund_name]).rstrip(",") + "后")
            if new_volatility < old_volatility * 0.9:
                sentence.append("整体组合波动率大幅降低")
            if new_drawdown < old_max_drawdown:
                sentence.append("最大回撤从{:.2%}降到不足{:.2%}".format(old_max_drawdown[0], new_drawdown[0]))
            if new_return_ratio_year > old_return_ratio_year:
                sentence.append("年化收益率提升{:.2f}个点".format((new_return_ratio_year - old_return_ratio_year) * 100))

            whole_sentence = ",".join(sentence).lstrip(",") + "。"
1149
            whole_sentence = [whole_sentence]
李宗熹's avatar
李宗熹 committed
1150 1151 1152
            return suggestions_result, suggestions_result_asset, return_compare_result, indicator_compare, whole_sentence
        except Exception as e:
            repr(e)
李宗熹's avatar
李宗熹 committed
1153
            return None, None, None, None, None
李宗熹's avatar
李宗熹 committed
1154

1155
    def single_evaluation(self, fund_id, fund_id_type=2, objective=False):
李宗熹's avatar
李宗熹 committed
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        """
           1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
           2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
           3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
           4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
           5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%

           旧个基显示1-4,新个基显示1-5。

           旧个基如果是要保留的,显示好的评价。
                如果是要剔除的,显示坏的评价。

           新个基只显示好的评价。
        Args:
            fund_id:

        Returns:
        """
        z_score = search_rank(fund_rank, fund_id, metric='z_score')
        total_level = np.select([z_score >= 80,
                                 70 <= z_score < 80,
                                 z_score < 70], [0, 1, 2]).item()

李宗熹's avatar
李宗熹 committed
1179
        index_return_monthly = get_index_monthly(self.index_id, self.start_date)
1180 1181 1182 1183
        t_type = self.portfolio_dict.get(fund_id, None)
        if t_type is not None:
            fund_id_type = t_type
        fund_nav = get_tamp_nav(fund_id, self.start_date, invest_type=fund_id_type)
李宗熹's avatar
李宗熹 committed
1184 1185 1186 1187 1188 1189
        fund_nav_monthly = fund_nav.groupby([fund_nav.index.year, fund_nav.index.month]).tail(1)
        fund_nav_monthly = rename_col(fund_nav_monthly, fund_id)
        fund_return_monthly = simple_return(fund_nav_monthly[fund_id].astype(float))
        index_return_monthly.index = index_return_monthly.index.strftime('%Y-%m')
        fund_return_monthly.index = fund_return_monthly.index.strftime('%Y-%m')
        compare = pd.merge(index_return_monthly, fund_return_monthly, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
1190
        fund_win_rate = ((compare[fund_id] - compare['pct_chg']) > 0).sum() / compare[fund_id].count()
李宗熹's avatar
李宗熹 committed
1191

李宗熹's avatar
李宗熹 committed
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        return_rank = search_rank(fund_rank, fund_id, metric='annual_return_rank')
        return_level = np.select([return_rank >= 0.8,
                                  0.7 <= return_rank < 0.8,
                                  0.6 <= return_rank < 0.7,
                                  return_rank < 0.6], [0, 1, 2, 3]).item()
        return_bool = 1 if return_level > 2 else 0
        return_triple = return_level - 1 if return_level >= 2 else return_level

        drawdown_rank = search_rank(fund_rank, fund_id, metric='max_drawdown_rank')
        drawdown_value = search_rank(fund_rank, fund_id, metric='max_drawdown')
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        drawdown_bool = 1 if drawdown_level > 2 else 0
        drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

        sharp_rank = search_rank(fund_rank, fund_id, metric='sharp_ratio_rank')
        sharp_level = np.select([sharp_rank >= 0.8,
                                 0.6 <= sharp_rank < 0.8,
                                 sharp_rank < 0.6], [0, 1, 2]).item()

        data = {1: [total_level, return_level, drawdown_level, sharp_level],
李宗熹's avatar
李宗熹 committed
1215
                2: [return_triple, format(fund_win_rate, '.2%'), return_bool],
李宗熹's avatar
李宗熹 committed
1216
                3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
李宗熹's avatar
李宗熹 committed
1217 1218
                4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

李宗熹's avatar
李宗熹 committed
1219
        if fund_id in self.abandon_fund_score:
李宗熹's avatar
李宗熹 committed
1220 1221 1222 1223 1224 1225 1226 1227
            data['remove'] = True
        elif fund_id in self.proposal_fund:
            data[5] = [1] * 7
            data['remove'] = False
        else:
            data['remove'] = False

        x = '30%'
李宗熹's avatar
李宗熹 committed
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        content = {
            # 第一个评价
            1: [["优秀", "良好", "一般"],
                ["优秀", "良好", "合格", "较差"],
                ["优秀", "良好", "合格", "较差"],
                ["高", "一般", "较低"]],
            # 第二个评价
            2: [["高于", "持平", "低于"],
                x,
                ["优秀", "一般"]],
            # 第三个评价
            3: [["优秀", "良好", "一般"],
                ["高", "中", "低"], x,
                ["高于", "持平", "低于"]],
            # 第四个评价
            4: [["较好", "较差"],
                ["较小", "较大"],
                ["较小", "较小"],
                ["较大", "较小"],
                ["较低", "较高"]],
            5: [["TO DO"]] * 7}
李宗熹's avatar
李宗熹 committed
1249 1250

        sentence = {
李宗熹's avatar
李宗熹 committed
1251
            1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
李宗熹's avatar
李宗熹 committed
1252
            2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
李宗熹's avatar
李宗熹 committed
1253 1254 1255
            3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
            4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n",
            5: "基金经理,投资年限%s年,经验丰富;投资能力较强,生涯中共管理过%s只基金,历任的%s只基金平均业绩在同类中处于上游水平,其中%s只排名在前%s;生涯年化回报率%s,同期大盘只有%s;"}
李宗熹's avatar
李宗熹 committed
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

        remove = data["remove"]
        del data["remove"]

        # 不剔除,选择好的话术
        if not remove:
            evaluation = choose_good_evaluation(data)
        # 剔除,选择坏的话术
        else:
            evaluation = choose_bad_evaluation(data)

李宗熹's avatar
李宗熹 committed
1267
        ret = []
李宗熹's avatar
李宗熹 committed
1268 1269
        fund_name = get_fund_name(fund_id).values[0][0]

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        # 默认评价
        # try:
        #     default_evaluation = pd.read_csv("./app/service/evaluation.csv", encoding='utf-8', names=['fund_id', 'eval'])
        #     if default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0]:
        #         ret.append('1、' + default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0])
        #
        #         evaluation_dict = {'name': fund_name, 'data': ret}
        #
        #         if objective:
        #             if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
        #                 evaluation_dict['status'] = "换仓"
        #             elif fund_id in self.portfolio:
        #                 evaluation_dict['status'] = "保留"
        #         else:
        #             evaluation_dict['status'] = ""
        #         return evaluation_dict
        # except Exception as e:
        #     pass
李宗熹's avatar
李宗熹 committed
1288

李宗熹's avatar
李宗熹 committed
1289
        i = 1
李宗熹's avatar
李宗熹 committed
1290
        for k, v in evaluation.items():
李宗熹's avatar
李宗熹 committed
1291
            single_sentence = str(i) + "、" + sentence[k] % translate_single(content, k, v)
李宗熹's avatar
李宗熹 committed
1292 1293
            ret.append(single_sentence)
            i += 1
李宗熹's avatar
李宗熹 committed
1294

李宗熹's avatar
李宗熹 committed
1295 1296
        evaluation_dict = {'name': fund_name, 'data': ret}

李宗熹's avatar
李宗熹 committed
1297
        if objective:
李宗熹's avatar
李宗熹 committed
1298 1299 1300 1301
            if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
                evaluation_dict['status'] = "换仓"
            elif fund_id in self.portfolio:
                evaluation_dict['status'] = "保留"
李宗熹's avatar
李宗熹 committed
1302 1303
        else:
            evaluation_dict['status'] = ""
李宗熹's avatar
李宗熹 committed
1304
        return evaluation_dict
李宗熹's avatar
李宗熹 committed
1305

李宗熹's avatar
李宗熹 committed
1306
    def old_portfolio_evaluation(self, objective=False):
李宗熹's avatar
李宗熹 committed
1307 1308 1309 1310
        try:
            result = []
            for fund in self.portfolio:
                try:
李宗熹's avatar
李宗熹 committed
1311
                    result.append(self.single_evaluation(fund, objective))
李宗熹's avatar
李宗熹 committed
1312 1313 1314 1315 1316 1317 1318
                except IndexError:
                    continue
            return result
        except Exception as e:
            repr(e)
            return None

李宗熹's avatar
李宗熹 committed
1319
    def propose_fund_evaluation(self, ):
李宗熹's avatar
李宗熹 committed
1320 1321
        try:
            result = []
1322
            for fund in self.propose_portfolio.columns:
李宗熹's avatar
李宗熹 committed
1323 1324 1325 1326
                result.append(self.single_evaluation(fund))
            return result
        except Exception as e:
            repr(e)
赵杰's avatar
赵杰 committed
1327
            # raise e
李宗熹's avatar
李宗熹 committed
1328
            return None
李宗熹's avatar
李宗熹 committed
1329

李宗熹's avatar
李宗熹 committed
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    def single_fund_radar(self):
        radar_data = []
        for fund in self.portfolio:
            try:
                radar_data.append(get_radar_data(fund))
            except IndexError:
                continue
        return radar_data

    def propose_fund_radar(self):
        radar_data = []
        for fund in self.proposal_fund:
            radar_data.append(get_radar_data(fund))
        return radar_data

赵杰's avatar
赵杰 committed
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    def original_fund_index_compare(self, total_fund_cnav_df):
        compare_data = []
        for fund in self.portfolio:
            data_df = total_fund_cnav_df[[fund, "index"]].dropna()
            data_df[fund + "_return_ratio"] = (data_df[fund] / data_df[fund].iloc[0] - 1)*100
            data_df["index_return_ratio"] = (data_df["index"] / data_df["index"].iloc[0] - 1) * 100
            xlabels = ["" for i in range(len(data_df))]

            com_data = {
                "xlabels": xlabels,
                "index": {'name': '中证500', 'data': data_df["index_return_ratio"].values},
                "fund": {'name': fund, 'data': data_df[fund + "_return_ratio"].values},
            }
            compare_data.append(com_data)
        return compare_data
李宗熹's avatar
李宗熹 committed
1360

李宗熹's avatar
李宗熹 committed
1361
# portfolio = {'HF00002JJ2':2, 'HF00005DBQ':2, 'HF0000681Q':2, 'HF00006693':2, 'HF00006AZF':2, 'HF00006BGS':2}
李宗熹's avatar
李宗熹 committed
1362 1363 1364
# portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
# portfolio_diagnose.optimize()
# if __name__ == '__main__':
李宗熹's avatar
李宗熹 committed
1365 1366 1367 1368 1369 1370 1371 1372
#     print(portfolio_diagnose.single_fund_radar())
#     print(portfolio_diagnose.propose_fund_radar())
#     print(portfolio_diagnose.old_portfolio_evaluation())
#     print('旧组合相关性:', portfolio_diagnose.old_correlation)
#     print('新组合相关性:', portfolio_diagnose.new_correlation)
#     print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
#     print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())
#     print(portfolio_diagnose.single_evaluation(fund_id='HF0000681Q'))