data_service.py 17.2 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/18 19:12
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : data_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sqlalchemy import and_
赵杰's avatar
赵杰 committed
12 13
import tushare as ts
import datetime
14
from decimal import Decimal
赵杰's avatar
赵杰 committed
15
from app.api.engine import tamp_user_session, tamp_product_session
16 17
# from app.model.tamp_user_models import CustomerOrder, CustomerInfo
# from app.model.tamp_product_models import FundInfo
赵杰's avatar
赵杰 committed
18 19 20 21 22


class UserCustomerDataAdaptor:
    user_id = ""
    customer_id = ""
23
    month_date = ""
赵杰's avatar
赵杰 committed
24
    end_date = ""
赵杰's avatar
赵杰 committed
25
    group_data = {}
赵杰's avatar
赵杰 committed
26
    trade_cal_date = None
27 28
    all_fund_distribution = {}
    all_fund_performance = {}
赵杰's avatar
赵杰 committed
29

30
    def __init__(self, user_id, customer_id, end_date=str(datetime.date.today()), index_id="IN0000007M"):
赵杰's avatar
赵杰 committed
31 32
        self.user_id = user_id
        self.customer_id = customer_id
33
        self.compare_index_id = index_id
赵杰's avatar
赵杰 committed
34 35
        p_end_date = pd.to_datetime(end_date).date()
        p_end_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1) - datetime.timedelta(days=1)
36
        self.end_date = pd.to_datetime(str(p_end_date))
37
        self.end_date = pd.to_datetime("2020-11-23")
38
        p_start_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1)
39
        self.month_start_date = p_start_date
40
        self.month_start_date = pd.to_datetime("2020-11-16")
赵杰's avatar
赵杰 committed
41
        self.user_customer_order_df = self.get_user_customer_order_data()
42
        self.fund_nav_total, self.fund_cnav_total = self.get_customer_fund_nav_data()
43
        self.index_df = self.get_customer_index_nav_data()
44
        self.total_customer_order_cnav_df = self.total_combine_data()
赵杰's avatar
赵杰 committed
45 46 47 48 49 50 51 52 53 54 55 56 57
        self.group_operate()

    @staticmethod
    def get_trade_cal(start_date, end_date):
        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
        df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
58

赵杰's avatar
赵杰 committed
59
        return df
赵杰's avatar
赵杰 committed
60 61 62

    # 获取理财师下该用户所有订单列表
    def get_user_customer_order_data(self):
63 64
        # data1 = tamp_user_session.query(CustomerOrder)\
        #         #     .filter(user_id = self.user_id).all()
赵杰's avatar
赵杰 committed
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        # data2 = tamp_user_session.query(t_customer_info).all()
        # data3 = tamp_product_session.query(t_fund_info).all()

        sql_user = """select f2.realname,f3.customer_name,fund_id,f1.order_type,f1.pay_date,f1.subscription_fee,f1.confirm_share_date,f1.confirm_share,f1.confirm_amount,f1.nav,f1.folio_name from customer_order f1, user_info f2,customer_info f3   where f2.id=f1.user_id and f3.id=f1.customer_id and f1.user_id='{}' and f1.customer_id='{}'""".format(self.user_id, self.customer_id)
        cur = tamp_user_session.execute(sql_user)
        data = cur.fetchall()
        order_df = pd.DataFrame(list(data), columns=['username', 'customer_name', 'fund_id', 'order_type', 'pay_date',
                                                     'subscription_fee', 'confirm_share_date', 'confirm_share',
                                                     'confirm_amount', 'nav', 'folio_name'])

        sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
        cur = tamp_product_session.execute(sql_product)
        data = cur.fetchall()
        product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])

        user_customer_order_df = order_df.set_index('fund_id').join(product_df.set_index('fund_id')).reset_index()
赵杰's avatar
赵杰 committed
81
        self.start_date = user_customer_order_df["confirm_share_date"].min()
赵杰's avatar
赵杰 committed
82 83 84 85
        return user_customer_order_df

    # 获取客户持有的基金净值数据
    def get_customer_fund_nav_data(self):
赵杰's avatar
赵杰 committed
86 87
        now_date = datetime.datetime.now().strftime("%Y%m%d")
        trade_date_df = self.get_trade_cal("20000101", now_date)
赵杰's avatar
赵杰 committed
88
        self.trade_cal_date = trade_date_df
赵杰's avatar
赵杰 committed
89
        all_fund_nav = pd.DataFrame(index=trade_date_df["datetime"])
90
        all_fund_cnav = pd.DataFrame(index=trade_date_df["datetime"])
赵杰's avatar
赵杰 committed
91 92 93 94 95 96 97 98

        for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
            # 对应基金净值
            sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(cur_fund_id)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            cur_fund_nav_df = pd.DataFrame(list(data), columns=['price_date', 'nav', 'cnav'])

赵杰's avatar
赵杰 committed
99
            # # 对应基金分红
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            sql = """select distinct `distribute_date`, `distribution` from `fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
                cur_fund_id)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            cur_fund_distribution_df = pd.DataFrame(list(data), columns=['price_date', 'distribution'])
            self.all_fund_distribution[cur_fund_id] = cur_fund_distribution_df

            # 对应基金performance数据
            sql = """select distinct `price_date`, `ret_1w`, `ret_cum_1m`, `ret_cum_6m`, `ret_cum_1y`, `ret_cum_ytd`, `ret_cum_incep` from `fund_performance` where `fund_id`='{}' order by `price_date` ASC""".format(
                cur_fund_id)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            cur_fund_performance_df = pd.DataFrame(list(data),
            columns=['price_date', 'ret_1w', 'ret_cum_1m', 'ret_cum_6m', 'ret_cum_1y', 'ret_cum_ytd', 'ret_cum_incep'])
            self.all_fund_performance[cur_fund_id] = cur_fund_performance_df
赵杰's avatar
赵杰 committed
115 116 117

            cur_fund_nav_df["price_date"] = pd.to_datetime(cur_fund_nav_df["price_date"])
            cur_fund_nav_df.set_index("price_date", inplace=True)
118 119 120
            all_fund_nav[cur_fund_id] = cur_fund_nav_df["nav"]
            all_fund_cnav[cur_fund_id] = cur_fund_nav_df["cnav"]

赵杰's avatar
赵杰 committed
121
        all_fund_nav = all_fund_nav[all_fund_nav.index <= self.end_date]
122 123
        all_fund_cnav = all_fund_cnav[all_fund_cnav.index <= self.end_date]
        return all_fund_nav, all_fund_cnav
赵杰's avatar
赵杰 committed
124 125

    # 获取客户对比指数净值数据
赵杰's avatar
赵杰 committed
126 127 128 129 130 131 132
    def get_customer_index_nav_data(self, index_id="IN0000007M"):
        sql = "select distinct price_date,close from fund_market_indexes where index_id='{}'  order by price_date ASC".format(index_id)
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()
        index_df = pd.DataFrame(list(data), columns=['price_date', 'index'])
        index_df["price_date"] = pd.to_datetime(index_df["price_date"])
        index_df.set_index("price_date", inplace=True)
133
        self.fund_cnav_total["index"] = index_df["index"]
134
        self.index_df = index_df
赵杰's avatar
赵杰 committed
135 136 137 138 139 140 141 142 143

        return index_df

    # 分组合计算
    def group_operate(self):
        for folio in self.user_customer_order_df["folio_name"].unique():
            cur_folio_order_df = self.user_customer_order_df[self.user_customer_order_df["folio_name"] == folio]
            fund_id_list = list(self.user_customer_order_df["fund_id"].unique())
            cur_folio_nav_df = self.fund_nav_total[fund_id_list]
144 145 146
            # fund_id_list.append("index")
            cur_folio_cnav_df = self.fund_cnav_total[fund_id_list]
            self.signal_folio_operate(folio, cur_folio_order_df, cur_folio_nav_df, cur_folio_cnav_df)
赵杰's avatar
赵杰 committed
147
            continue
赵杰's avatar
赵杰 committed
148

赵杰's avatar
赵杰 committed
149
    # 单个组合数据操作
150
    def signal_folio_operate(self, p_folio, p_order_df, p_nav_df, p_cnav_df):
赵杰's avatar
赵杰 committed
151 152
        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = row["nav"] - last_nav_data.values[0]
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
赵杰's avatar
赵杰 committed
180 181 182 183
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            # # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            # if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
            #     last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     # 判断上个净值日和当前确认日之中是否存在分红日
            #     """need add judge"""
            #
            #     if len(last_nav_data) < 1:
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
            #     else:
            #         diff_nav = row["nav"] - last_nav_data.values[0]
            #         cur_cnav = last_cnav_data.values[0] + diff_nav
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

            if cur_fund_id+"_amount" not in cnav_df:
199 200
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
201
                cnav_df[cur_fund_id + "_profit"] = profit
202 203 204 205
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
206 207 208
                cnav_df[cur_fund_id+"_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0
赵杰's avatar
赵杰 committed
209 210 211

            # buy
            if row['order_type'] == 1:
212 213
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
赵杰's avatar
赵杰 committed
214 215
            # sell
            elif row['order_type'] == 2:
216 217
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]
赵杰's avatar
赵杰 committed
218

219 220 221 222 223 224 225 226 227 228
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_profit"] * cnav_df[cur_fund_id + "_share"]
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_earn"].apply(lambda x: float(x))
            # cnav_df[cur_fund_id + "_cum_earn"] = cnav_df[cur_fund_id + "_earn"].cumsum()

        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"] + cnav_df[p_fund_id_ + "_amount"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
229 230
        self.group_data[p_folio] = {"result_cnav_data": cnav_df, "order_df": p_order_df}
        return cnav_df
赵杰's avatar
赵杰 committed
231

232
    # 所有的数据操作
233
    def total_combine_data(self):
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

        p_order_df = self.user_customer_order_df.copy()
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = row["nav"] - last_nav_data.values[0]
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in cnav_df:
271 272
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
273
                cnav_df[cur_fund_id + "_profit"] = profit
274 275 276 277
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
278 279 280 281
                cnav_df[cur_fund_id + "_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

282 283 284 285 286 287 288 289 290 291
                # profit = cnav_df[cur_fund_id].dropna() - cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit"] = profit
                # cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_profit_ratio"] = profit / cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_amount"] = 0
                # cnav_df[cur_fund_id + "_earn"] = 0
                # # cnav_df[cur_fund_id + "_cum_earn"] = 0
                # cnav_df[cur_fund_id + "_share"] = 0

292 293 294 295 296 297 298 299 300
            # buy
            if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
            # sell
            elif row['order_type'] == 2:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]

301 302 303 304 305 306
        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"] + cnav_df[p_fund_id_ + "_amount"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
307
        return cnav_df