fund_service.py 10.1 KB
Newer Older
pengxiong's avatar
pengxiong committed
1 2 3 4 5 6 7 8
# -*- encoding: utf-8 -*-
# -----------------------------------------------------------------------------
# @File Name  : fund_service.py
# @Time       : 2021/1/14 下午5:31
# @Author     : X. Peng
# @Email      : acepengxiong@163.com
# @Software   : PyCharm
# -----------------------------------------------------------------------------
9
from app.service.portfolio_diagnose import *
赵杰's avatar
赵杰 committed
10
from app.utils.draw import draw_index_combination_chart
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33


def get_tamp_nav(fund, start_date, rollback=False, invest_type=2):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        invest_type[num]:0:公募 1:私募 2:优选

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
    with TAMP_SQL(tamp_product_engine) as tamp_product, TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_product_session = tamp_product.session
        tamp_fund_session = tamp_fund.session
        # if invest_type == "private":
        #     sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
        #           "WHERE fund_id='{}'".format(fund)
        #     # df = pd.read_sql(sql, con).dropna(how='any')
        #     cur = tamp_product_session.execute(sql)
        if invest_type == 0:
赵杰's avatar
赵杰 committed
34
            sql = """select distinct `fund_id`, `price_date`, `cumulative_nav` from `tx_fund_nav` where `fund_id`='{}' and `delete_tag`=0 order by `price_date` ASC""".format(
35 36 37 38 39 40 41 42 43 44
                fund)
            cur = tamp_fund_session.execute(sql)
        elif invest_type == 1:
            sql = """select distinct `fund_id`, `price_date`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
            cur = tamp_fund_session.execute(sql)
        elif invest_type == 2:
            sql = """select distinct `fund_id`,`price_date`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
            cur = tamp_product_session.execute(sql)
赵杰's avatar
赵杰 committed
45 46 47 48
        elif invest_type == 3:
            sql = """select distinct `fund_id`,`price_date`,`cumulative_nav` from `ifa_imported_fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
            cur = tamp_fund_session.execute(sql)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

        data = cur.fetchall()
        df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
        df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)
        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
    return df


def single_evaluation(fund_id, invest_type=2, index_id='000905.SH'):
    """
       1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
       2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
       3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
       4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
       5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%
73 74 75
    :param fund_id: 基金ID
    :param index_id: 指数ID
    :param invest_type: 投资类型:0:公募 1:私募 2:探普优选
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    """
    end_date = datetime.datetime(datetime.date.today().year,
                                 datetime.date.today().month, 1) - datetime.timedelta(1)
    start_date = cal_date(end_date, 'Y', 1)

    z_score = search_rank(fund_rank, fund_id, metric='z_score')
    total_level = np.select([z_score >= 80,
                             70 <= z_score < 80,
                             z_score < 70], [0, 1, 2]).item()

    index_return_monthly = get_index_monthly(index_id, start_date)
    fund_nav = get_tamp_nav(fund_id, start_date, invest_type=invest_type)
    fund_nav_monthly = fund_nav.groupby([fund_nav.index.year, fund_nav.index.month]).tail(1)
    fund_nav_monthly = rename_col(fund_nav_monthly, fund_id)
    fund_return_monthly = simple_return(fund_nav_monthly[fund_id].astype(float))
    index_return_monthly.index = index_return_monthly.index.strftime('%Y-%m')
    fund_return_monthly.index = fund_return_monthly.index.strftime('%Y-%m')
    compare = pd.merge(index_return_monthly, fund_return_monthly, how='inner', left_index=True, right_index=True)
    fund_win_rate = ((compare[fund_id] - compare['pct_chg']) > 0).sum() / compare[fund_id].count()

    return_rank = search_rank(fund_rank, fund_id, metric='annual_return_rank')
    return_level = np.select([return_rank >= 0.8,
                              0.7 <= return_rank < 0.8,
                              0.6 <= return_rank < 0.7,
                              return_rank < 0.6], [0, 1, 2, 3]).item()
    return_bool = 1 if return_level > 2 else 0
    return_triple = return_level - 1 if return_level >= 2 else return_level

    drawdown_rank = search_rank(fund_rank, fund_id, metric='max_drawdown_rank')
    drawdown_value = search_rank(fund_rank, fund_id, metric='max_drawdown')
    drawdown_level = np.select([drawdown_rank >= 0.8,
                                0.7 <= drawdown_rank < 0.8,
                                0.6 <= drawdown_rank < 0.7,
                                drawdown_rank < 0.6], [0, 1, 2, 3]).item()
    drawdown_bool = 1 if drawdown_level > 2 else 0
    drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

    sharp_rank = search_rank(fund_rank, fund_id, metric='sharp_ratio_rank')
    sharp_level = np.select([sharp_rank >= 0.8,
                             0.6 <= sharp_rank < 0.8,
                             sharp_rank < 0.6], [0, 1, 2]).item()

    data = {1: [total_level, return_level, drawdown_level, sharp_level],
            2: [return_triple, format(fund_win_rate, '.2%'), return_bool],
            3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
            4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

    x = '30%'
    content = {
        # 第一个评价
        1: [["优秀", "良好", "一般"],
            ["优秀", "良好", "合格", "较差"],
            ["优秀", "良好", "合格", "较差"],
            ["高", "一般", "较低"]],
        # 第二个评价
        2: [["高于", "持平", "低于"],
            x,
            ["优秀", "一般"]],
        # 第三个评价
        3: [["优秀", "良好", "一般"],
            ["高", "中", "低"], x,
            ["高于", "持平", "低于"]],
        # 第四个评价
        4: [["较好", "较差"],
            ["较小", "较大"],
            ["较小", "较小"],
            ["较大", "较小"],
            ["较低", "较高"]]}

    sentence = {
        1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
        2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
        3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
        4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n"}

    ret = []
    fund_name = get_fund_name(fund_id).values[0][0]

    i = 1
    for k, v in data.items():
        single_sentence = str(i) + "、" + sentence[k] % translate_single(content, k, v)
        ret.append(single_sentence)
        i += 1

pengxiong's avatar
pengxiong committed
160
    evaluation_dict = {'fund_name': fund_name, 'status': '', 'evaluation': ret, 'radar_chart_path': fund_index_compare(fund_id=fund_id, invest_type=invest_type)}
161 162 163 164 165 166 167 168 169 170

    # if objective:
    #     if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
    #         evaluation_dict['status'] = "换仓"
    #     elif fund_id in self.portfolio:
    #         evaluation_dict['status'] = "保留"
    # else:
    #     evaluation_dict['status'] = ""
    return evaluation_dict

pengxiong's avatar
pengxiong committed
171

172 173 174 175 176 177 178 179
def fund_index_compare(fund_id, invest_type=2, index_id='000905.SH'):
    start_date = datetime.datetime(2000, 1, 1)
    index_daily = get_index_daily(index_id, start_date)
    fund_nav = get_tamp_nav(fund_id, start_date, invest_type=invest_type)
    fund_nav = rename_col(fund_nav, fund_id)
    compare = pd.merge(index_daily, fund_nav, how='inner', left_index=True, right_index=True)
    compare[index_id + '_return_ratio'] = (compare[index_id] / compare[index_id].iloc[0] - 1) * 100
    compare[fund_id + '_return_ratio'] = (compare[fund_id] / compare[fund_id].iloc[0] - 1) * 100
赵杰's avatar
赵杰 committed
180 181 182

    xlabels = ["" for i in range(len(compare))]

183 184
    # index_name = get_index_name(index_id).values[0][0]
    # fund_name = get_fund_name(fund_id).values[0][0]
赵杰's avatar
赵杰 committed
185 186
    chart_data = {
        "xlabels": xlabels,
187
        "index": {'name': '中证500', 'data': compare[index_id + "_return_ratio"].values},
赵杰's avatar
赵杰 committed
188 189 190 191
        "fund": {'name': fund_id, 'data': compare[fund_id + "_return_ratio"].values},
    }
    r = draw_index_combination_chart(chart_data)
    return r
192 193


194
if __name__ == '__main__':
195 196
    # print(single_evaluation(fund_id='HF00005AFK'))
    print(fund_index_compare(fund_id='HF00002G4A'))