portfolio_diagnose.py 44.1 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5
from app.utils.fund_rank import *
from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier
李宗熹's avatar
李宗熹 committed
6
from app.api.engine import tamp_product_engine, tamp_fund_engine, TAMP_SQL
李宗熹's avatar
李宗熹 committed
7 8 9 10 11 12 13 14 15 16 17


def cal_correlation(prod):
    """计算组合内基金相关性

    Args:
        prod: 组合净值表:索引为日期,列名为基金ID, 内容为净值

    Returns:屏蔽基金与自身相关性的相关矩阵,因为基金与自身相关性为1,妨碍后续高相关性基金筛选的判断

    """
李宗熹's avatar
李宗熹 committed
18
    prod_return = prod.iloc[:, :].apply(lambda x: simple_return(x).astype(float))
李宗熹's avatar
李宗熹 committed
19
    correlation = prod_return.corr()
李宗熹's avatar
李宗熹 committed
20
    correlation = correlation.round(2)
李宗熹's avatar
李宗熹 committed
21
    return correlation.mask(np.eye(correlation.shape[0], dtype=np.bool_))
李宗熹's avatar
李宗熹 committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68


def rename_col(df, fund_id):
    """将列名由adj_nav改为基金ID

    Args:
        df: 原始净值表:索引为日期,列名分别为 ”fund_id“, "adj_nav", 内容为[基金ID,净值]
        fund_id: 基金ID

    Returns:删除 ”fund_id” 列, 重命名 “adj_nav” 列为基金ID的净值表

    """
    df.rename(columns={'adj_nav': fund_id}, inplace=True)
    df.drop('fund_id', axis=1, inplace=True)
    return df


def replace_fund(manager, substrategy, fund_rank):
    """查找不足半年数据的基金的替代基金

    Args:
        manager: 基金经理ID
        substrategy: 基金二级策略
        fund_rank:  基金打分排名表

    Returns: 满足相同基金经理ID下的同种二级策略的基金ID的第一个结果

    """
    df = fund_rank[(fund_rank['manager'] == manager) &
                   (fund_rank['substrategy'] == substrategy)]
    return df['fund_id'].values[0]


def search_rank(fund_rank, fund, metric):
    """查找基金在基金排名表中的指标

    Args:
        fund_rank: 基金排名表
        fund: 输入基金ID
        metric: 查找的指标名称

    Returns: 基金指标的值

    """
    return fund_rank[fund_rank['fund_id'] == fund][metric].values[0]


李宗熹's avatar
李宗熹 committed
69
def translate_single(content, content_id, evaluation):
李宗熹's avatar
李宗熹 committed
70 71 72 73 74 75 76
    '''
    content = [["优秀","良好","一般"],
           ["优秀","良好","合格","较差"],
           ["优秀","良好","合格","较差"],
           ["高","一般","较低"]]
    evaluation = [0,1,1,2]
    '''
李宗熹's avatar
李宗熹 committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90
    ret = []
    for i, v in enumerate(evaluation):
        if isinstance(v, str):
            ret.append(v)
            continue
        elif content[content_id][i][v] in ["优秀", "良好", "高", "高于", "较好"]:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        elif content_id == 4 and v == 0:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        else:
            ret.append("""<span class="self_description_green">{}</span>""".format(content[content_id][i][v]))
    return tuple(ret)
李宗熹's avatar
李宗熹 committed
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109


def choose_good_evaluation(evaluation):
    """抽取好的评价

    Args:
        evaluation: 个基的评价

    Returns: 个基好的评价

    """
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]
    v5 = evaluation[5]

    if v1[0] > 1:
        del evaluation[1]
李宗熹's avatar
李宗熹 committed
110 111
    # if v2[0] > 1:
    if v2:
李宗熹's avatar
李宗熹 committed
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        del evaluation[2]
    if v3[0] > 1:
        del evaluation[3]
    if v4[0] != 0 or v4[1] != 0:
        del evaluation[4]
    if v5[0] < 3 or v5[2] > 1:  # 基金经理的基金管理年限小于三年或平均业绩处于中下水平
        del evaluation[5]

    return evaluation


def choose_bad_evaluation(evaluation):
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]

    if v1[0] < 2:
        del evaluation[1]
李宗熹's avatar
李宗熹 committed
131 132
    # if v2[0] < 2:
    if v2:
李宗熹's avatar
李宗熹 committed
133 134 135 136 137 138 139 140 141 142
        del evaluation[2]
    if v3[0] < 2:
        del evaluation[3]
    if v4[0] != 1 or v4[1] != 1:
        del evaluation[4]

    return evaluation


def get_fund_rank():
李宗熹's avatar
李宗熹 committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        sql = "SELECT * FROM fund_rank"

        # df = pd.read_sql(sql, con)
        # df = pd.read_csv('fund_rank.csv', encoding='gbk')
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['index', 'fund_id', 'range_return', 'annual_return', 'max_drawdown',
                                               'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                               'substrategy', 'manager', 'annual_return_rank', 'downside_risk_rank',
                                               'max_drawdown_rank', 'sharp_ratio_rank', 'z_score'])
        df.drop('index', axis=1, inplace=True)
        return df
李宗熹's avatar
李宗熹 committed
157 158 159 160 161 162 163 164 165 166 167


def get_index_daily(index_id):
    """获取指数数据

    Args:
        index_id: 指数ID

    Returns:与组合净值形式相同的表

    """
李宗熹's avatar
李宗熹 committed
168 169 170 171 172 173 174
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        sql = "SELECT ts_code, trade_date, close FROM index_daily WHERE ts_code='{}'".format(index_id)
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()

赵杰's avatar
赵杰 committed
175
        df = pd.DataFrame(list(data), columns=['ts_code', 'trade_date', ' close'])
李宗熹's avatar
李宗熹 committed
176 177 178 179 180
        df.rename({'ts_code': 'fund_id', 'trade_date': 'end_date', 'close': 'adj_nav'}, axis=1, inplace=True)
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
李宗熹's avatar
李宗熹 committed
181 182 183 184 185 186 187 188 189
    return df


def get_tamp_fund():
    """获取探普产品池净值表

    Returns:

    """
李宗熹's avatar
李宗熹 committed
190 191 192 193 194 195 196 197
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        sql = "SELECT id FROM tamp_fund_info WHERE id LIKE 'HF%'"
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()
        # df = pd.read_sql(sql, con)
        df = pd.DataFrame(list(data), columns=['id'])
        df.rename({'id': 'fund_id'}, axis=1, inplace=True)
李宗熹's avatar
李宗熹 committed
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    return df


def get_risk_level(substrategy):
    """获取风险类型

    Args:
        substrategy: 二级策略

    Returns:

    """
    substrategy2risk = {1: "H",
                        1010: "H", 1020: "H", 1030: "H",
                        2010: "H",
                        3010: "H", 3020: "L", 3030: "H", 3040: "L", 3050: "M",
                        4010: "M", 4020: "M", 4030: "M", 4040: "M",
                        5010: "M", 5020: "L", 5030: "M",
                        6010: "L", 6020: "M", 6030: "L",
                        7010: "H", 7020: "H",
                        8010: "H", 8020: "M"}
    return substrategy2risk[substrategy]


李宗熹's avatar
李宗熹 committed
222 223 224 225 226 227 228 229
def get_radar_data(fund):
    df = fund_rank[fund_rank['fund_id'] == fund]
    return_score = df['annual_return_rank'].values[0] * 100
    downside_score = df['downside_risk_rank'].values[0] * 100
    drawdown_score = df['max_drawdown_rank'].values[0] * 100
    sharpe_score = df['sharp_ratio_rank'].values[0] * 100
    total_score = df['z_score'].values[0]
    fund_name = get_fund_name(fund).values[0][0]
李宗熹's avatar
李宗熹 committed
230

李宗熹's avatar
李宗熹 committed
231 232 233 234 235 236 237 238 239
    return {'name': fund_name, 'data': [{'name': '绝对收益', 'data': '%.2f' % return_score},
                                        {'name': '抗风险能力', 'data': '%.2f' % downside_score},
                                        {'name': '极端风险', 'data': '%.2f' % drawdown_score},
                                        {'name': '风险调整后收益', 'data': '%.2f' % sharpe_score},
                                        {'name': '业绩持续性', 'data': '%.2f' % np.random.randint(70, 90)},
                                        {'name': '综合评分', 'data': '%.2f' % total_score}]}


def get_fund_name(fund):
李宗熹's avatar
李宗熹 committed
240 241 242 243 244 245 246 247
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
        # df = pd.read_sql(sql, con)
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['fund_short_name'])
        return df
李宗熹's avatar
李宗熹 committed
248 249 250


# 获取排名信息
李宗熹's avatar
李宗熹 committed
251
fund_rank = get_fund_rank()
李宗熹's avatar
李宗熹 committed
252
# 获取探普产品池
李宗熹's avatar
李宗熹 committed
253
tamp_fund = get_tamp_fund()
李宗熹's avatar
李宗熹 committed
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281


class PortfolioDiagnose(object):
    def __init__(self, client_type, portfolio, invest_amount, expect_return=None,
                 expect_drawdown=None, index_id='000905.SH', invest_type='private', start_date=None, end_date=None):
        """基金诊断

        Args:
            client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
            portfolio: 投资组合:[基金1, 基金2, 基金3...]
            invest_amount: 投资金额:10000000元
            invest_type: 投资类型:public, private, ...
            start_date: 诊断所需净值的开始日期
            end_date: 诊断所需净值的结束日期
        """

        self.freq_list = []
        self.client_type = client_type
        self.portfolio = portfolio
        self.expect_return = expect_return
        self.expect_drawdown = expect_drawdown
        self.index_id = index_id
        self.invest_amount = invest_amount
        self.invest_type = invest_type
        self.start_date = start_date
        self.end_date = end_date

        if self.end_date is None:
李宗熹's avatar
李宗熹 committed
282 283
            self.end_date = datetime.datetime(datetime.date.today().year,
                                              datetime.date.today().month, 1) - datetime.timedelta(1)
李宗熹's avatar
李宗熹 committed
284 285 286 287 288
            self.start_date = cal_date(self.end_date, 'Y', 1)

        self.replace_pair = dict()  # 由于数据不足半年而被替换为相同基金经理和策略的原基金和替换基金的映射
        self.no_data_fund = []  # 未在数据库中找到基金净值或者基金经理记录的基金
        self.abandon_fund_score = []  # 打分不满足要求的基金
李宗熹's avatar
李宗熹 committed
289
        self.abandon_fund_corr = []  # 相关性过高
李宗熹's avatar
李宗熹 committed
290 291 292 293 294
        self.proposal_fund = []  # 建议的基金
        self.old_correlation = None
        self.new_correlation = None
        self.old_weights = None
        self.new_weights = None
李宗熹's avatar
李宗熹 committed
295 296 297
        self.origin_portfolio = None
        self.abandoned_portfolio = None
        self.propose_portfolio = None
李宗熹's avatar
李宗熹 committed
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

    def get_portfolio(self, ):
        """获取组合净值表

        Returns:

        """
        # 获取原始投资组合的第一支基金的净值表
        prod = get_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)
        fund_info = get_fund_info(self.end_date, invest_type=self.invest_type)

        while prod is None:
            # 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
            result = fund_info[fund_info['fund_id'] == portfolio[0]]
            manager = str(result['manager'].values)
            strategy = result['substrategy'].values
            replaced_fund = replace_fund(manager, strategy, fund_rank)

            if replaced_fund is not None:
                # 替换基金数据非空则记录替换的基金对
                prod = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
                self.replace_pair[portfolio[0]] = replaced_fund
            else:
                # 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
                self.no_data_fund.append(portfolio[0])
                self.portfolio.pop(0)
                prod = get_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)

        # 记录基金的公布频率
        self.freq_list.append(get_frequency(prod))
        prod = rename_col(prod, portfolio[0])

        # 循环拼接基金净值表构建组合
        for idx in range(len(portfolio) - 1):
            prod1 = get_nav(portfolio[idx + 1], self.start_date, invest_type=self.invest_type)

            if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
                result = fund_info[fund_info['fund_id'] == portfolio[idx + 1]]

                if result['fund_manager_id'].count() != 0:
                    manager = str(result['fund_manager_id'].values)
                    substrategy = result['substrategy'].values[0]
                    replaced_fund = replace_fund(manager, substrategy, fund_rank)
                else:
                    self.no_data_fund.append(portfolio[idx + 1])
                    continue

                if replaced_fund is not None:
                    prod1 = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
347
                    self.replace_pair[portfolio[idx + 1]] = replaced_fund
李宗熹's avatar
李宗熹 committed
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
                    self.freq_list.append(get_frequency(prod1))
                    prod1 = rename_col(prod1, replaced_fund)
                else:
                    self.no_data_fund.append(portfolio[idx + 1])
                    continue
            else:
                self.freq_list.append(get_frequency(prod1))
                prod1 = rename_col(prod1, portfolio[idx + 1])

            # 取prod表和prod1表的并集
            prod = pd.merge(prod, prod1, on=['end_date'], how='outer')

        # 对所有合并后的基金净值表按最大周期进行重采样
        prod.sort_index(inplace=True)
        prod.ffill(inplace=True)
        prod = resample(prod, get_trade_cal(), min(self.freq_list))
        return prod

    def abandon(self, prod):
        """建议替换的基金

        Args:
            prod: 原始组合净值表

        Returns: 剔除建议替换基金的组合净值表

        """
        self.old_correlation = cal_correlation(prod)

        for fund in prod.columns:
            z_score = search_rank(fund_rank, fund, metric='z_score')
            # 建议替换得分为60或与其他基金相关度大于0.8的基金
            if z_score < 60:
                self.abandon_fund_score.append(fund)
李宗熹's avatar
李宗熹 committed
382
                continue
李宗熹's avatar
李宗熹 committed
383

李宗熹's avatar
李宗熹 committed
384
            elif np.any(self.old_correlation[fund] > 0.8):
李宗熹's avatar
李宗熹 committed
385
                self.abandon_fund_corr.append(fund)
李宗熹's avatar
李宗熹 committed
386

李宗熹's avatar
李宗熹 committed
387
        prod = prod.drop(self.abandon_fund_score + self.abandon_fund_corr, axis=1)
李宗熹's avatar
李宗熹 committed
388 389 390
        self.old_correlation = self.old_correlation.fillna(1).round(2)
        self.old_correlation.columns = self.old_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.old_correlation.index = self.old_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
391 392 393 394 395 396 397 398 399 400 401 402
        return prod

    def proposal(self, prod):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
        # 组合内已包含的策略
李宗熹's avatar
李宗熹 committed
403
        # included_strategy = set()
李宗熹's avatar
李宗熹 committed
404 405 406 407
        # 按每种基金最少投资100w确定组合包含的最大基金数量
        max_len = self.invest_amount // 1e6 - len(prod.columns)

        # 排名表内包含的所有策略
李宗熹's avatar
李宗熹 committed
408 409 410
        # all_strategy = set(fund_rank['substrategy'].to_list())
        # if prod is not None:
        #     included_strategy = set([search_rank(fund_rank, fund, metric='substrategy') for fund in prod.columns])
李宗熹's avatar
李宗熹 committed
411 412

        # 待添加策略为所有策略-组合已包含策略
李宗熹's avatar
李宗熹 committed
413
        # add_strategy = all_strategy - included_strategy
李宗熹's avatar
李宗熹 committed
414 415 416 417 418 419

        # 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金
        for proposal in tamp_fund['fund_id']:

            if proposal in fund_rank['fund_id'].to_list():
                proposal_z_score = search_rank(fund_rank, proposal, metric='z_score')
李宗熹's avatar
李宗熹 committed
420
                # proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
李宗熹's avatar
李宗熹 committed
421 422 423
            else:
                continue

李宗熹's avatar
李宗熹 committed
424 425
            # if proposal_z_score > 80 and proposal_strategy in add_strategy:
            if proposal_z_score > 60:
李宗熹's avatar
李宗熹 committed
426 427 428 429 430 431 432 433 434 435

                proposal_nav = get_nav(proposal, self.start_date, invest_type=self.invest_type)
                # 忽略净值周期大于周更的产品
                if get_frequency(proposal_nav) <= 52:
                    continue

                self.freq_list.append(get_frequency(proposal_nav))
                proposal_nav = rename_col(proposal_nav, proposal)

                # 按最大周期进行重采样,计算新建组合的相关性
李宗熹's avatar
李宗熹 committed
436
                prod = pd.merge(prod, proposal_nav, how='outer', on='end_date').astype(float)
李宗熹's avatar
李宗熹 committed
437 438 439 440
                prod.sort_index(inplace=True)
                prod.ffill(inplace=True)
                prod = resample(prod, get_trade_cal(), min(self.freq_list))

李宗熹's avatar
李宗熹 committed
441 442
                self.new_correlation = cal_correlation(prod)
                judge_correlation = self.new_correlation.fillna(0)
李宗熹's avatar
李宗熹 committed
443

李宗熹's avatar
李宗熹 committed
444
                if np.all(judge_correlation < 0.8):
李宗熹's avatar
李宗熹 committed
445 446 447
                    self.proposal_fund.append(proposal)
                    max_len -= 1

李宗熹's avatar
李宗熹 committed
448 449 450
                    # add_strategy -= {proposal_strategy}
                    # if len(add_strategy) == 0 or max_len == 0:
                    if max_len == 0:
李宗熹's avatar
李宗熹 committed
451 452 453
                        break
                else:
                    prod.drop(columns=proposal, inplace=True)
李宗熹's avatar
李宗熹 committed
454 455 456 457

        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
458 459 460
        return prod

    def optimize(self, ):
李宗熹's avatar
李宗熹 committed
461 462
        import time
        start = time.time()
李宗熹's avatar
李宗熹 committed
463
        self.origin_portfolio = self.get_portfolio()
李宗熹's avatar
李宗熹 committed
464 465
        end1 = time.time()
        print("原始组合数据获取时间:", end1 - start)
李宗熹's avatar
李宗熹 committed
466
        self.abandoned_portfolio = self.abandon(self.origin_portfolio)
李宗熹's avatar
李宗熹 committed
467 468
        end2 = time.time()
        print("计算换仓基金时间:", end2 - end1)
李宗熹's avatar
李宗熹 committed
469
        self.propose_portfolio = self.proposal(self.abandoned_portfolio)
李宗熹's avatar
李宗熹 committed
470 471
        end3 = time.time()
        print("遍历产品池获取候选推荐时间:", end3 - end2)
李宗熹's avatar
李宗熹 committed
472
        # propose_portfolio.to_csv('test_portfolio.csv', encoding='gbk')
李宗熹's avatar
李宗熹 committed
473

李宗熹's avatar
李宗熹 committed
474 475 476
        mu = expected_returns.mean_historical_return(self.propose_portfolio, frequency=min(self.freq_list))
        S = risk_models.sample_cov(self.propose_portfolio, frequency=min(self.freq_list))
        dd = expected_returns.drawdown_from_prices(self.propose_portfolio)
李宗熹's avatar
李宗熹 committed
477

李宗熹's avatar
李宗熹 committed
478
        # if self.client_type == 1:
李宗熹's avatar
李宗熹 committed
479 480 481
        # proposal_risk = [[x, get_risk_level(search_rank(fund_rank, x, metric='substrategy'))] for x in
        #                  propose_portfolio.columns]
        # self.proposal_fund = list(filter(lambda x: x[1] != 'H', proposal_risk))
李宗熹's avatar
李宗熹 committed
482

李宗熹's avatar
李宗熹 committed
483 484 485 486
        # drop_fund_list = list(filter(lambda x: x[1] = 'H', proposal_risk))
        # proposal_portfolio = list((set(self.portfolio) - set(self.no_data_fund) - set(self.replace_pair.keys())) | \
        #                           (set(self.proposal_fund) | set(self.replace_pair.values())))
        # propose_portfolio.drop()
李宗熹's avatar
李宗熹 committed
487

李宗熹's avatar
李宗熹 committed
488
        propose_risk_mapper = dict()
李宗熹's avatar
李宗熹 committed
489
        for fund in self.propose_portfolio.columns:
李宗熹's avatar
李宗熹 committed
490 491
            propose_risk_mapper[fund] = str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))

李宗熹's avatar
李宗熹 committed
492 493 494 495
        # risk_upper = {"H": 0.0}
        # risk_lower = {"L": 0.6, "M": 0.4}

        w_low = 1e6 / self.invest_amount
李宗熹's avatar
李宗熹 committed
496
        ef = EfficientFrontier(mu, S, expected_drawdown=dd)
李宗熹's avatar
李宗熹 committed
497
        # ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
李宗熹's avatar
李宗熹 committed
498
        # weights = ef.nonconvex_objective(deviation_risk_parity, ef.cov_matrix)
李宗熹's avatar
李宗熹 committed
499
        ef.efficient_return(0.3)
李宗熹's avatar
李宗熹 committed
500
        clean_weights = ef.clean_weights()
李宗熹's avatar
李宗熹 committed
501
        # ef.portfolio_performance(verbose=True)
李宗熹's avatar
李宗熹 committed
502
        self.new_weights = np.array(list(clean_weights.values()))
李宗熹's avatar
李宗熹 committed
503 504 505
        print(clean_weights)
        end4 = time.time()
        print("模型计算一次时间:", end4 - end3)
李宗熹's avatar
李宗熹 committed
506 507 508 509
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)
李宗熹's avatar
李宗熹 committed
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

        # elif self.client_type == 2:
        # elif self.client_type == 3:
        # elif self.client_type == 4:
        # elif self.client_type == 5:
        # print(len(propose_portfolio.columns))
        # # 单支基金占投资额的下界为 100W/投资总额
        # # w_low = 1e6 / self.invest_amount
        # w_low = 0
        # w_origin, S, mu = optim_drawdown(propose_portfolio, 0.5, [w_low, 1], min(self.freq_list))
        # print(w_origin)
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)

    def return_compare(self):
        index_data = get_index_daily(self.index_id)
李宗熹's avatar
李宗熹 committed
528
        index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
529 530
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1
        # origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
531
        propose_fund_return = self.propose_portfolio.iloc[:, :] / self.propose_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
532 533 534
        propose_fund_return['return'] = propose_fund_return.T.iloc[:, :].apply(lambda x: np.dot(self.new_weights, x))
        return index_return, propose_fund_return

赵杰's avatar
赵杰 committed
535 536 537
    def old_evaluation(self, group_name, group_result, data_adaptor):
        start_year = data_adaptor.start_date.year
        start_month = data_adaptor.start_date.month
李宗熹's avatar
李宗熹 committed
538 539 540 541 542
        current_year = datetime.datetime.now().year
        current_month = datetime.datetime.now().month
        current_day = datetime.datetime.now().day
        past_month = (current_year - start_year) * 12 + current_month - start_month

赵杰's avatar
赵杰 committed
543
        # 投入成本(万元)
李宗熹's avatar
李宗熹 committed
544
        input_cost = round(group_result[group_name]["total_cost"] / 10000, 2)
赵杰's avatar
赵杰 committed
545
        # 整体盈利(万元)
李宗熹's avatar
李宗熹 committed
546
        total_profit = round(group_result[group_name]["cumulative_profit"] / 10000, 2)
赵杰's avatar
赵杰 committed
547 548 549 550 551 552
        # 整体表现 回撤能力
        fund_rank_data = fund_rank[fund_rank["fund_id"].isin(self.portfolio)]
        z_score = fund_rank_data["z_score"].mean()
        drawdown_rank = fund_rank_data["max_drawdown_rank"].mean()
        return_rank_df = fund_rank_data["annual_return_rank"]
        z_score_level = np.select([z_score >= 80,
李宗熹's avatar
李宗熹 committed
553 554
                                   70 <= z_score < 80,
                                   z_score < 70], [0, 1, 2]).item()
赵杰's avatar
赵杰 committed
555 556 557 558 559 560 561 562 563 564 565
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        # 收益稳健
        fund_rank_re = fund_rank_data[fund_rank_data["annual_return_rank"] > 0.8]
        return_rank_evaluate = ""
        if len(fund_rank_re) > 0:
            num = len(fund_rank_re)
            fund_id_rank_list = list(fund_rank_re["fund_id"])
            for f_id in fund_id_rank_list:
李宗熹's avatar
李宗熹 committed
566 567
                name = data_adaptor.user_customer_order_df[data_adaptor.user_customer_order_df["fund_id"] == f_id][
                    "fund_name"].values[0]
赵杰's avatar
赵杰 committed
568
                return_rank_evaluate = return_rank_evaluate + name + "、"
李宗熹's avatar
李宗熹 committed
569
            return_rank_evaluate = return_rank_evaluate[:-1] + "等" + str(num) + "只产品稳健,对组合的收益率贡献明显,"
赵杰's avatar
赵杰 committed
570 571 572

        # 正收益基金数量
        group_hold_data = pd.DataFrame(group_result[group_name]["group_hoding_info"])
赵杰's avatar
赵杰 committed
573
        profit_positive_num = group_hold_data[group_hold_data["profit"]>0]["profit"].count()
赵杰's avatar
赵杰 committed
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        if profit_positive_num > 0:
            profit_positive_evaluate = str(profit_positive_num) + "只基金取的正收益,"
        else:
            profit_positive_evaluate = ""

        # 综合得分较低数量
        abandon_num = len(self.abandon_fund_score)
        abandon_evaluate = str(abandon_num) + "只基金综合得分较低建议更换,"

        # 成立时间短
        if len(self.no_data_fund) > 0:
            no_data_fund_evaluate = str(len(self.no_data_fund)) + "只基金因为成立时间较短,暂不做评价;"
        else:
            no_data_fund_evaluate = ";"

李宗熹's avatar
李宗熹 committed
589 590
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
赵杰's avatar
赵杰 committed
591 592 593 594 595 596
        strategy_list = group_order_df["substrategy"]
        uniqe_strategy = list(strategy_list.unique())
        uniqe_strategy_name = [dict_substrategy[int(x)] + "、" for x in uniqe_strategy]
        # 覆盖的基金名称
        strategy_name_evaluate = "".join(uniqe_strategy_name)[:-1]

李宗熹's avatar
李宗熹 committed
597
        if len(uniqe_strategy) / float(len(strategy_list)) > 0.6:
赵杰's avatar
赵杰 committed
598 599 600 601 602
            strategy_distribution_evaluate = "策略上有一定分散"
        else:
            strategy_distribution_evaluate = "策略分散程度不高"
        # 相关性
        if len(self.abandon_fund_corr) > 0:
李宗熹's avatar
李宗熹 committed
603 604
            fund_corr_name = [str(group_order_df[group_order_df["fund_id"] == f_id]["fund_name"].values[0]) + "和" for
                              f_id in self.abandon_fund_corr]
赵杰's avatar
赵杰 committed
605 606 607 608
            fund_corr_evaluate = "".join(fund_corr_name)[:-1] + "相关性较高,建议调整组合配比;"
        else:
            fund_corr_evaluate = ";"

李宗熹's avatar
李宗熹 committed
609
        num_fund = len(self.portfolio)
赵杰's avatar
赵杰 committed
610
        evaluate_enum = [["优秀", "良好", "一般"],
李宗熹's avatar
李宗熹 committed
611
                         ["优秀", "良好", "合格", "较差"]]
李宗熹's avatar
李宗熹 committed
612

赵杰's avatar
赵杰 committed
613 614
        z_score_evaluate = evaluate_enum[0][z_score_level]
        drawdown_evaluate = evaluate_enum[1][drawdown_level]
赵杰's avatar
赵杰 committed
615 616 617 618 619 620 621 622 623
        if z_score_evaluate in ["优秀", "良好"]:
            z_score_evaluate = """<span class="self_description_red">{}</span>""".format(z_score_evaluate)
        else:
            z_score_evaluate = """<span class="self_description_green">{}</span>""".format(z_score_evaluate)

        if drawdown_evaluate in ["优秀", "良好"]:
            drawdown_evaluate = """<span class="self_description_red">{}</span>""".format(drawdown_evaluate)
        else:
            drawdown_evaluate = """<span class="self_description_green">{}</span>""".format(drawdown_evaluate)
赵杰's avatar
赵杰 committed
624 625 626 627 628 629 630 631 632 633 634 635

        sentence = {
            1: "1、组合构建于{}年{}月,至今已运行{}个月。投入成本为{}万元,截止{}年{}月{}日,整体盈利{}万元,整体表现{},回撤控制能力{};\n",
            2: "2、组合共持有{}只基金,{}{}{}{}\n",
            3: "3、策略角度来看,组合涵盖了{}, {}{}\n"
        }

        data = {1: [start_year, start_month, past_month, input_cost, current_year, current_month, current_day,
                    total_profit, z_score_evaluate, drawdown_evaluate],
                2: [num_fund, return_rank_evaluate, profit_positive_evaluate, abandon_evaluate, no_data_fund_evaluate],
                3: [strategy_name_evaluate, strategy_distribution_evaluate, fund_corr_evaluate]
                }
赵杰's avatar
赵杰 committed
636
        ret = []
赵杰's avatar
赵杰 committed
637
        for k, v in data.items():
赵杰's avatar
赵杰 committed
638
            ret.append(sentence[k].format(*data[k]).replace(",;", ";"))
赵杰's avatar
赵杰 committed
639
        return ret
李宗熹's avatar
李宗熹 committed
640

641 642 643 644
    def new_evaluation(self, group_name, group_result, data_adaptor):

        group_result_data = group_result[group_name]
        hold_info = group_result_data["group_hoding_info"]
赵杰's avatar
赵杰 committed
645 646 647 648
        hold_info_df = pd.DataFrame(hold_info)
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
        group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())
649 650

        # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤,	夏普比率
赵杰's avatar
赵杰 committed
651
        total_asset = round(hold_info_df["market_values"].sum(), 2)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        old_return = group_result_data["cumulative_return"]
        old_return_ratio_year = group_result_data["return_ratio_year"]
        old_volatility = group_result_data["volatility"]
        old_max_drawdown = group_result_data["max_drawdown"]
        old_sharpe = group_result_data["sharpe"]

        # 建议基金数据
        index_return, propose_fund_return = self.return_compare()
        propose_fund_id_list = list(propose_fund_return.columns)
        propose_fund_id_list.remove("return")
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
            cur = tamp_product_session.execute(sql_product)
            data = cur.fetchall()
            product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
        propose_fund_df = product_df[product_df["fund_id"].isin(propose_fund_id_list)]
李宗熹's avatar
李宗熹 committed
669

赵杰's avatar
赵杰 committed
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        # 基金名称,策略分级
        propose_fund_id_name_list = [propose_fund_df[propose_fund_df["fund_id"] == fund_id]["fund_name"].values[0] for
                                     fund_id in propose_fund_id_list]
        propose_fund_id_strategy_name_list = [dict_substrategy[int(propose_fund_df[propose_fund_df["fund_id"] == fund_id]["substrategy"].values[0])] for
                                     fund_id in propose_fund_id_list]
        propose_fund_asset = [round(self.new_weights[i] * total_asset, 2) for i in range(len(propose_fund_id_name_list))]

        propose_info = {propose_fund_id_strategy_name_list[i]:
                            {"fund_name": propose_fund_id_name_list[i],
                             "substrategy": propose_fund_id_strategy_name_list[i],
                             "asset": propose_fund_asset[i]}
                        for i in range(len(propose_fund_id_list))}
        # 调仓建议
        suggestions_result = {}
        old_hold_fund_name_list = list(hold_info_df["fund_name"])
        for hold in hold_info:
            suggestions = {}
            if hold["fund_strategy_name"] not in suggestions_result.keys():
                suggestions_result[hold["fund_strategy_name"]] = {}
            suggestions["fund_strategy_name"] = hold["fund_strategy_name"]
            suggestions["fund_name"] = hold["fund_name"]
            suggestions["before_optimization"] = hold["market_values"]
            suggestions["after_optimization"] = 0
            if suggestions["fund_strategy_name"] in propose_fund_id_strategy_name_list:
                suggestions["after_optimization"] = 0
            suggestions_result[hold["fund_strategy_name"]][suggestions["fund_name"]] = suggestions

        for key, value in propose_info.items():
            if value["fund_name"] not in old_hold_fund_name_list:
                suggestions = {}
                if key not in suggestions_result.keys():
                    suggestions_result[key] = {}
                suggestions["fund_strategy_name"] = value["substrategy"]
                suggestions["fund_name"] = value["fund_name"]
                suggestions["before_optimization"] = 0
                suggestions["after_optimization"] = value["asset"]
                suggestions_result[key][suggestions["fund_name"]] = suggestions
赵杰's avatar
赵杰 committed
707 708
        for key, value in suggestions_result.items():
            suggestions_result[key] = list(value.values())
赵杰's avatar
赵杰 committed
709 710
        suggestions_result_asset = {"before": total_asset, "after": total_asset}

赵杰's avatar
赵杰 committed
711
        # 旧组合累积收益df
赵杰's avatar
赵杰 committed
712 713
        old_return_df = group_result_data["return_df"]
        old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"] - 1
赵杰's avatar
赵杰 committed
714
        # 新组合累积收益df
赵杰's avatar
赵杰 committed
715 716 717 718
        propose_fund_return_limit_data = propose_fund_return[propose_fund_return.index >= group_order_start_date]
        start_return = propose_fund_return_limit_data['return'].values[0]
        propose_fund_return_limit_data["new_return"] = (propose_fund_return_limit_data["return"] - start_return)/(1+start_return)

赵杰's avatar
赵杰 committed
719 720
        # 新组合累积收益
        new_return_ratio = propose_fund_return_limit_data["new_return"].values[-1]
赵杰's avatar
赵杰 committed
721 722 723 724 725 726
        # 新组合区间年化收益率
        freq_max = group_order_df["freq"].max()
        n_freq = freq_days(int(freq_max))
        new_return_ratio_year = annual_return(propose_fund_return_limit_data["new_return"].values[-1], propose_fund_return_limit_data, n_freq)

        # 新组合波动率
赵杰's avatar
赵杰 committed
727
        new_volatility = volatility(propose_fund_return_limit_data["new_return"]+1, n_freq)
赵杰's avatar
赵杰 committed
728 729 730 731 732 733 734 735 736

        # 新组合最大回撤
        new_drawdown = max_drawdown(propose_fund_return_limit_data["new_return"]+1)

        # 新组合夏普比率
        sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
        exc = excess_return(sim, BANK_RATE, n_freq)
        new_sharpe = sharpe_ratio(exc, sim, n_freq)

赵杰's avatar
赵杰 committed
737 738 739 740 741 742 743 744 745 746 747
        # 指数收益
        index_return = index_return[index_return.index >= group_order_start_date]
        start_index_return = index_return[" close"].values[0]
        index_return["new_index_return"] = (index_return[" close"] - start_index_return) / (1 + start_index_return)
        index_return_ratio = index_return["new_index_return"].values[-1]
        index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], n_freq)
        index_volatility = volatility(index_return["new_index_return"]+1, n_freq)
        index_drawdown = max_drawdown(index_return["new_index_return"]+1)
        index_sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
        index_exc = excess_return(index_sim, BANK_RATE, n_freq)
        index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
748

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        # 收益对比数据
        return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]], right_index=True,
                 left_index=True)
        return_compare_df = pd.merge(return_compare_df, propose_fund_return_limit_data["new_return"], right_index=True,
                 left_index=True)
        return_compare_df["date"] = return_compare_df.index
        return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
        return_compare_df.iloc[1:-1,:]["date"] = ""
        return_compare_result = {
            "new_combination": {"name": "新组合", "data": return_compare_df["new_return"].values},
            "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values},
            "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values},
            "xlabels": return_compare_df["date"].values
        }

赵杰's avatar
赵杰 committed
764
        # 指标对比
765
        old_indicator = {"group_name": "现有持仓组合", "return_ratio": round((old_return-1)*100, 2), "return_ratio_year": round(old_return_ratio_year*100,2),
赵杰's avatar
赵杰 committed
766 767 768
                         "volatility": round(old_volatility*100, 2), "max_drawdown": round(old_max_drawdown[0]*100, 2), "sharpe": round(old_sharpe, 2)}
        new_indicator = {"group_name": "建议优化组合", "return_ratio": round(new_return_ratio*100, 2), "return_ratio_year": round(new_return_ratio_year*100, 2),
                         "volatility": round(new_volatility*100, 2), "max_drawdown": round(new_drawdown[0]*100, 2), "sharpe": round(new_sharpe, 2)}
769 770 771
        index_indicator = {"group_name": "中证500", "return_ratio": round(index_return_ratio*100, 2), "return_ratio_year": round(index_return_ratio_year*100, 2),
                         "volatility": round(index_volatility*100, 2), "max_drawdown": round(index_drawdown[0]*100, 2), "sharpe": round(index_sharpe, 2)}
        indicator_compare = [new_indicator, old_indicator, index_indicator]
赵杰's avatar
赵杰 committed
772

李宗熹's avatar
李宗熹 committed
773

李宗熹's avatar
李宗熹 committed
774 775 776
        # 在保留{}的基础上,建议赎回{},并增配{}后,整体组合波动率大幅降低,最大回撤从{}降到不足{},年化收益率提升{}个点
        hold_fund = set(self.portfolio) - set(self.abandon_fund_score + self.abandon_fund_corr + self.no_data_fund)
        hold_fund_name = [get_fund_name(x).values[0][0] for x in hold_fund]
李宗熹's avatar
李宗熹 committed
777
        abandon_fund = (self.abandon_fund_score + self.abandon_fund_corr)
李宗熹's avatar
李宗熹 committed
778
        abandon_fund_name = [get_fund_name(x).values[0][0] for x in abandon_fund]
李宗熹's avatar
李宗熹 committed
779
        proposal_fund = self.proposal_fund
李宗熹's avatar
李宗熹 committed
780
        proposal_fund_name = [get_fund_name(x).values[0][0] for x in proposal_fund]
李宗熹's avatar
李宗熹 committed
781

李宗熹's avatar
李宗熹 committed
782
        sentence = []
李宗熹's avatar
李宗熹 committed
783
        if hold_fund is not None:
李宗熹's avatar
李宗熹 committed
784
            sentence.append("在保留" + "".join([i + "," for i in hold_fund_name]).rstrip(",") + "的基础上")
李宗熹's avatar
李宗熹 committed
785
        if abandon_fund is not None:
李宗熹's avatar
李宗熹 committed
786
            sentence.append("建议赎回" + "".join([i + "," for i in abandon_fund_name]).rstrip(","))
李宗熹's avatar
李宗熹 committed
787
        if proposal_fund is not None:
李宗熹's avatar
李宗熹 committed
788 789 790
            sentence.append("增配" + "".join([i + "," for i in proposal_fund_name]).rstrip(",") + "后")
        if new_volatility < old_volatility * 0.9:
            sentence.append("整体组合波动率大幅降低")
李宗熹's avatar
李宗熹 committed
791
        if new_drawdown < old_max_drawdown:
李宗熹's avatar
李宗熹 committed
792
            sentence.append("最大回撤从{:.2%}降到不足{:.2%}".format(old_max_drawdown[0], new_drawdown[0]))
李宗熹's avatar
李宗熹 committed
793
        if new_return_ratio_year > old_return_ratio_year:
李宗熹's avatar
李宗熹 committed
794 795 796
            sentence.append("年化收益率提升{:.2f}个点".format((new_return_ratio_year - old_return_ratio_year) * 100))

        whole_sentence = ",".join(sentence).lstrip(",") + "。"
李宗熹's avatar
李宗熹 committed
797
        return suggestions_result, suggestions_result_asset, return_compare_result, indicator_compare, whole_sentence
李宗熹's avatar
李宗熹 committed
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    def single_evaluation(self, fund_id):
        """
           1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
           2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
           3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
           4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
           5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%

           旧个基显示1-4,新个基显示1-5。

           旧个基如果是要保留的,显示好的评价。
                如果是要剔除的,显示坏的评价。

           新个基只显示好的评价。
        Args:
            fund_id:

        Returns:
        """
        z_score = search_rank(fund_rank, fund_id, metric='z_score')
        total_level = np.select([z_score >= 80,
                                 70 <= z_score < 80,
                                 z_score < 70], [0, 1, 2]).item()

        return_rank = search_rank(fund_rank, fund_id, metric='annual_return_rank')
        return_level = np.select([return_rank >= 0.8,
                                  0.7 <= return_rank < 0.8,
                                  0.6 <= return_rank < 0.7,
                                  return_rank < 0.6], [0, 1, 2, 3]).item()
        return_bool = 1 if return_level > 2 else 0
        return_triple = return_level - 1 if return_level >= 2 else return_level

        drawdown_rank = search_rank(fund_rank, fund_id, metric='max_drawdown_rank')
        drawdown_value = search_rank(fund_rank, fund_id, metric='max_drawdown')
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        drawdown_bool = 1 if drawdown_level > 2 else 0
        drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

        sharp_rank = search_rank(fund_rank, fund_id, metric='sharp_ratio_rank')
        sharp_level = np.select([sharp_rank >= 0.8,
                                 0.6 <= sharp_rank < 0.8,
                                 sharp_rank < 0.6], [0, 1, 2]).item()

        data = {1: [total_level, return_level, drawdown_level, sharp_level],
李宗熹's avatar
李宗熹 committed
846 847
                2: [return_triple, "12", return_bool],
                3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
李宗熹's avatar
李宗熹 committed
848 849
                4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

李宗熹's avatar
李宗熹 committed
850
        if fund_id in self.abandon_fund_score:
李宗熹's avatar
李宗熹 committed
851 852 853 854 855 856 857 858
            data['remove'] = True
        elif fund_id in self.proposal_fund:
            data[5] = [1] * 7
            data['remove'] = False
        else:
            data['remove'] = False

        x = '30%'
李宗熹's avatar
李宗熹 committed
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        content = {
            # 第一个评价
            1: [["优秀", "良好", "一般"],
                ["优秀", "良好", "合格", "较差"],
                ["优秀", "良好", "合格", "较差"],
                ["高", "一般", "较低"]],
            # 第二个评价
            2: [["高于", "持平", "低于"],
                x,
                ["优秀", "一般"]],
            # 第三个评价
            3: [["优秀", "良好", "一般"],
                ["高", "中", "低"], x,
                ["高于", "持平", "低于"]],
            # 第四个评价
            4: [["较好", "较差"],
                ["较小", "较大"],
                ["较小", "较小"],
                ["较大", "较小"],
                ["较低", "较高"]],
            5: [["TO DO"]] * 7}
李宗熹's avatar
李宗熹 committed
880 881

        sentence = {
李宗熹's avatar
李宗熹 committed
882 883 884 885 886
            1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
            2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
            3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
            4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n",
            5: "基金经理,投资年限%s年,经验丰富;投资能力较强,生涯中共管理过%s只基金,历任的%s只基金平均业绩在同类中处于上游水平,其中%s只排名在前%s;生涯年化回报率%s,同期大盘只有%s;"}
李宗熹's avatar
李宗熹 committed
887 888 889 890 891 892 893 894 895 896 897

        remove = data["remove"]
        del data["remove"]

        # 不剔除,选择好的话术
        if not remove:
            evaluation = choose_good_evaluation(data)
        # 剔除,选择坏的话术
        else:
            evaluation = choose_bad_evaluation(data)

李宗熹's avatar
李宗熹 committed
898 899
        ret = []
        i = 1
李宗熹's avatar
李宗熹 committed
900
        for k, v in evaluation.items():
李宗熹's avatar
李宗熹 committed
901
            single_sentence = str(i) + "、" + sentence[k] % translate_single(content, k, v)
李宗熹's avatar
李宗熹 committed
902 903
            ret.append(single_sentence)
            i += 1
李宗熹's avatar
李宗熹 committed
904
        fund_name = get_fund_name(fund_id).values[0][0]
李宗熹's avatar
李宗熹 committed
905 906 907 908 909 910
        evaluation_dict = {'name': fund_name, 'data': ret}
        if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
            evaluation_dict['status'] = "换仓"
        elif fund_id in self.portfolio:
            evaluation_dict['status'] = "保留"
        return evaluation_dict
李宗熹's avatar
李宗熹 committed
911 912 913 914

    def old_portfolio_evaluation(self, ):
        result = []
        for fund in self.portfolio:
李宗熹's avatar
李宗熹 committed
915 916 917 918
            try:
                result.append(self.single_evaluation(fund))
            except IndexError:
                continue
李宗熹's avatar
李宗熹 committed
919 920 921 922 923 924 925 926
        return result

    def propose_fund_evaluation(self, ):
        result = []
        for fund in self.proposal_fund:
            result.append(self.single_evaluation(fund))
        return result

李宗熹's avatar
李宗熹 committed
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
    def single_fund_radar(self):
        radar_data = []
        for fund in self.portfolio:
            try:
                radar_data.append(get_radar_data(fund))
            except IndexError:
                continue
        return radar_data

    def propose_fund_radar(self):
        radar_data = []
        for fund in self.proposal_fund:
            radar_data.append(get_radar_data(fund))
        return radar_data

李宗熹's avatar
李宗熹 committed
942

李宗熹's avatar
李宗熹 committed
943 944 945
portfolio = ['HF00002JJ2', 'HF00005DBQ', 'HF0000681Q', 'HF00006693', 'HF00006AZF', 'HF00006BGS']
portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
portfolio_diagnose.optimize()
李宗熹's avatar
李宗熹 committed
946
if __name__ == '__main__':
李宗熹's avatar
李宗熹 committed
947 948 949 950 951
    print(portfolio_diagnose.single_fund_radar())
    print(portfolio_diagnose.propose_fund_radar())
    print(portfolio_diagnose.old_portfolio_evaluation())
    print('旧组合相关性:', portfolio_diagnose.old_correlation)
    print('新组合相关性:', portfolio_diagnose.new_correlation)
李宗熹's avatar
李宗熹 committed
952
    print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
李宗熹's avatar
李宗熹 committed
953
    print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())