result_service_v2.py 34.5 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11 12
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/23 15:29
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : result_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
import datetime
from decimal import Decimal
13
from app.service.data_service_v2_1 import UserCustomerDataAdaptor
14
from app.utils.fund_rank import get_frequency
赵杰's avatar
赵杰 committed
15 16 17 18 19 20 21
from app.utils.week_evaluation import *


class UserCustomerResultAdaptor(UserCustomerDataAdaptor):
    total_result_data = {}
    group_result_data = {}

22 23
    def __init__(self, user_id, customer_id):
        super().__init__(user_id, customer_id)
赵杰's avatar
赵杰 committed
24 25 26 27 28 29 30 31

    # 组合结果数据
    def calculate_group_result_data(self):

        for folio in self.group_data.keys():
            folio_report_data = {}

            cur_folio_result_cnav_data = self.group_data[folio]["result_cnav_data"]
赵杰's avatar
赵杰 committed
32 33
            cur_folio_order_data = self.group_data[folio]["order_df"].copy()

34 35 36 37 38
            # freq_max = cur_folio_order_data["freq"].max()
            freq_list = [get_frequency(cur_folio_result_cnav_data[[p_nav]]) for p_nav in
                         cur_folio_result_cnav_data.columns]
            freq_dict = {250: 1, 52: 2, 24: 4, 12: 3, 4: 5}
            freq_max = freq_dict[min(freq_list)]
赵杰's avatar
赵杰 committed
39 40 41 42 43 44
            first_trade_date = cur_folio_order_data["confirm_share_date"].min()

            fund_id_list = list(cur_folio_order_data["fund_id"].unique())
            fund_id_list_earn = [i + "_earn" for i in fund_id_list]
            # fund_id_list_amount = [i + "_amount" for i in fund_id_list]
            profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
赵杰's avatar
赵杰 committed
45
            folio_report_data["fund_id_list"] = fund_id_list
赵杰's avatar
赵杰 committed
46 47 48 49 50

            # 组合收益率数组
            # return_ratio_df, contribution_decomposition= self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
            # resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
            resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
51 52 53 54 55
            if resample_cur_folio_result_cnav_data.index.values[-1] > self.end_date:
                last = resample_cur_folio_result_cnav_data.index.values[-1]
                resample_cur_folio_result_cnav_data["index_date"] = resample_cur_folio_result_cnav_data.index
                resample_cur_folio_result_cnav_data.loc[last, "index_date"] = self.end_date
                resample_cur_folio_result_cnav_data.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
56 57 58 59
            resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <= self.end_date]
            return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data,
                                                                                 fund_id_list)
            resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
60 61 62 63 64
            if resample_df.index.values[-1] > self.end_date:
                last = resample_df.index.values[-1]
                resample_df["index_date"] = resample_df.index
                resample_df.loc[last, "index_date"] = self.end_date
                resample_df.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            resample_df = resample_df[resample_df.index <= self.end_date]


            # 收益分解df
            contribution_decomposition_df = contribution_decomposition.fillna(0)*100
            p_plot_data = []
            for a_fund_id in list(contribution_decomposition_df.columns):
                a_name = cur_folio_order_data[cur_folio_order_data["fund_id"]==a_fund_id]["fund_name"].values[0]
                plot_data = {'name': a_name, 'data': contribution_decomposition_df[a_fund_id].astype(np.float64).values}
                p_plot_data.append(plot_data)
            x_lables_data = list(contribution_decomposition_df.index)
            cumulative_data = {'name': '总收益', 'data': ((month_return_ratio_df["cum_return_ratio"] - 1)*100).values}
            folio_report_data["contribution_decomposition"] = {"xlabels": x_lables_data, "product_list": p_plot_data,
                                                               "cumulative": cumulative_data}

            # 总成本
赵杰's avatar
赵杰 committed
81
            total_cost = round(float((cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_share"]*cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["nav"]).sum()), 0)
赵杰's avatar
赵杰 committed
82 83 84 85 86 87 88 89 90 91 92 93 94
            folio_report_data["total_cost"] = total_cost

            # 累积盈利
            cumulative_profit = profit_df.sum().sum()
            folio_report_data["cumulative_profit"] = float(cumulative_profit)

            # 区间年化收益率
            n_freq = freq_days(int(freq_max))
            return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1]-1), resample_df, n_freq)
            folio_report_data["return_ratio_year"] = float(return_ratio_year)

            # 波动率
            volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
95
            folio_report_data["volatility"] = float(volatility_) if not math.isnan(volatility_) else 0.0
赵杰's avatar
赵杰 committed
96 97 98 99 100 101 102 103

            # 最大回撤
            drawdown = max_drawdown(resample_df["cum_return_ratio"])
            folio_report_data["max_drawdown"] = drawdown

            # 夏普比率
            sim = simple_return(resample_df["cum_return_ratio"])
            exc = excess_return(sim, BANK_RATE, n_freq)
104 105 106 107
            try:
                sharpe = sharpe_ratio(exc, sim, n_freq)
            except ZeroDivisionError:
                sharpe = 0.0
108
            folio_report_data["sharpe"] = float(sharpe) if not math.isnan(sharpe) else 0.0
赵杰's avatar
赵杰 committed
109 110 111 112 113 114 115 116 117 118 119 120

            # 期末资产
            ending_assets = cumulative_profit + total_cost
            folio_report_data["ending_assets"] = float(ending_assets)

            # 本月收益
            cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date+datetime.timedelta(days=1), fund_id_list_earn]
            cur_month_profit = cur_month_profit_df.sum().sum()
            folio_report_data["cur_month_profit"] = float(cur_month_profit)

            # 本月累积收益率
            last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
赵杰's avatar
赵杰 committed
121
            cur_profit_ratio = return_ratio_df.loc[self.month_start_date - datetime.timedelta(days=1):, "cum_return_ratio"].values
赵杰's avatar
赵杰 committed
122 123 124
            if len(last_profit_ratio) <= 0:
                cur_month_profit_ratio = cur_profit_ratio[-1] - 1
            else:
赵杰's avatar
赵杰 committed
125 126 127 128
                if len(cur_profit_ratio) < 1:
                    cur_month_profit_ratio = 0
                else:
                    cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
129 130 131 132 133 134 135 136 137 138 139 140 141 142
            folio_report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)

            # 今年累积收益
            cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
            cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
            cur_year_profit = cur_year_profit_df.sum().sum()
            folio_report_data["cur_year_profit"] = float(cur_year_profit)

            # 今年累积收益率
            last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
            cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
            if len(last_profit_ratio) <= 0:
                cur_year_profit_ratio = cur_profit_ratio[-1] - 1
            else:
143 144 145 146
                if len(cur_profit_ratio) < 1:
                    cur_year_profit_ratio = 0
                else:
                    cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            folio_report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)

            # 累积收益率
            cumulative_return= return_ratio_df["cum_return_ratio"].values[-1]
            folio_report_data["cumulative_return"] = float(cumulative_return)

            # 月度分组
            def year_month(x):
                a = x.year
                b = x.month
                return str(a) + "/" + str(b)

            profit_df_cp = profit_df.copy()
            profit_df_cp["date"] = profit_df_cp.index
            grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
            sum_group = grouped.agg(np.sum)
            month_sum = sum_group.sum(axis=1)

            # 贡献分解
            month_earn = sum_group.div(month_sum, axis='rows')
            month_earn["datetime"] = pd.to_datetime(month_earn.index)
            month_earn.sort_values(by="datetime", inplace=True)
            del month_earn["datetime"]
            col = list(month_earn.columns)
            col_ = {x: x.replace('_earn', '') for x in list(col)}
            month_earn.rename(columns=col_, inplace=True)
            # folio_report_data["contribution_decomposition"] = month_earn

            # 组合内单个基金净值数据  组合内基金持仓数据
            result_fund_nav_info, result_fund_hoding_info = self.group_fund_basic_info_data(cur_folio_order_data, cur_folio_result_cnav_data, cumulative_profit, total_cost)

            # 拼接组合以及综合结果数据
            folio_report_data["group_nav_info"] = result_fund_nav_info
            folio_report_data["group_hoding_info"] = result_fund_hoding_info
            folio_report_data["group_hoding_info_total"] = \
赵杰's avatar
赵杰 committed
182 183 184 185
                {"total_cost": "%.2f" % round(float(total_cost)/10000.0, 2),
                 "cur_month_profit": "%.2f" % round(cur_month_profit/10000.0, 2),
                 "cur_month_profit_ratio": "%.2f" % round(cur_month_profit_ratio*100, 2),
                 "ending_assets": "%.2f" % round(ending_assets/10000.0, 2),
赵杰's avatar
赵杰 committed
186
                 "weight": 100,
赵杰's avatar
赵杰 committed
187 188 189
                 "cumulative_profit": "%.2f" % round(cumulative_profit/10000.0, 2),
                 "cumulative_return": "%.2f" % round((cumulative_return-1)*100, 2),
                 "return_ratio_year": "%.2f" % round(return_ratio_year*100, 2)}
赵杰's avatar
赵杰 committed
190 191

            # 对应指数数据
赵杰's avatar
赵杰 committed
192
            index_df = self.get_customer_index_nav_data().dropna()
赵杰's avatar
赵杰 committed
193 194 195 196 197 198 199 200 201 202 203 204
            index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)],
                                                          "index")
            folio_report_data["index_result"] = index_result
            folio_report_data["return_df"] = resample_df
            self.group_result_data[folio] = folio_report_data

        return self.group_result_data

    # 综述数据
    def calculate_total_data(self):
        report_data = {}

赵杰's avatar
赵杰 committed
205
        cur_folio_result_cnav_data = self.total_customer_order_cnav_df.copy()
赵杰's avatar
赵杰 committed
206
        cur_folio_order_data = self.user_customer_order_df.copy()
207 208 209 210 211
        # freq_max = cur_folio_order_data["freq"].max()
        freq_list = [get_frequency(cur_folio_result_cnav_data[[p_nav]]) for p_nav in
                     cur_folio_result_cnav_data.columns]
        freq_dict = {250: 1, 52: 2, 24: 4, 12: 3, 4: 5}
        freq_max = freq_dict[min(freq_list)]
赵杰's avatar
赵杰 committed
212 213 214
        #
        fund_id_list = list(cur_folio_order_data["fund_id"].unique())
        fund_id_list_earn = [i + "_earn" for i in fund_id_list]
赵杰's avatar
赵杰 committed
215
        fund_id_list_amount = [i + "_net_amount" for i in fund_id_list]
赵杰's avatar
赵杰 committed
216
        profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
赵杰's avatar
赵杰 committed
217
        amount_df = cur_folio_result_cnav_data[fund_id_list_amount].copy()
赵杰's avatar
赵杰 committed
218 219 220 221 222 223 224 225 226 227 228

        # 持仓周期
        first_trade_date = cur_folio_order_data["confirm_share_date"].min()
        hold_days = (self.end_date - pd.to_datetime(first_trade_date)).days
        report_data["hold_days"] = hold_days

        # 组合收益率数组
        # return_ratio_df = self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
        # resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)

        resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
229 230 231 232 233
        if resample_cur_folio_result_cnav_data.index.values[-1] > self.end_date:
            last = resample_cur_folio_result_cnav_data.index.values[-1]
            resample_cur_folio_result_cnav_data["index_date"] = resample_cur_folio_result_cnav_data.index
            resample_cur_folio_result_cnav_data.loc[last, "index_date"] = self.end_date
            resample_cur_folio_result_cnav_data.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
234 235 236
        resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <=self.end_date]
        return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data, fund_id_list)
        resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
237 238 239 240 241
        if resample_df.index.values[-1] > self.end_date:
            last = resample_df.index.values[-1]
            resample_df["index_date"] = resample_df.index
            resample_df.loc[last, "index_date"] = self.end_date
            resample_df.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
242 243 244
        resample_df = resample_df[resample_df.index <= self.end_date]

        # 总成本
赵杰's avatar
赵杰 committed
245
        total_cost = round(float((cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_share"]*cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["nav"]).sum()), 0)
赵杰's avatar
赵杰 committed
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        report_data["total_cost"] = total_cost

        # 累积盈利
        cumulative_profit = profit_df.sum().sum()
        report_data["cumulative_profit"] = float(cumulative_profit)

        # 区间年化收益
        n_freq = freq_days(int(freq_max))
        return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1] - 1), resample_df, n_freq)
        report_data["return_ratio_year"] = float(return_ratio_year)

        # # 波动率
        # volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
        # report_data["volatility"] = float(volatility_)

        # 最大回撤
        drawdown = max_drawdown(resample_df["cum_return_ratio"])
        report_data["max_drawdown"] = drawdown
        #
        # # 夏普比率
        # sim = simple_return(resample_df["cum_return_ratio"])
        # exc = excess_return(sim, BANK_RATE, n_freq)
        # sharpe = sharpe_ratio(exc, sim, n_freq)
        # report_data["sharpe"] = float(sharpe)

        # 期末资产
        ending_assets = cumulative_profit + total_cost
        report_data["ending_assets"] = float(ending_assets)

        # 本月收益
        cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date + datetime.timedelta(days=1),
                              fund_id_list_earn]
        cur_month_profit = cur_month_profit_df.sum().sum()
        report_data["cur_month_profit"] = float(cur_month_profit)

        # 本月累积收益率
        last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
        cur_profit_ratio = return_ratio_df.loc[self.month_start_date:, "cum_return_ratio"].values
        if len(last_profit_ratio) <= 0:
            cur_month_profit_ratio = cur_profit_ratio[-1] - 1
        else:
赵杰's avatar
赵杰 committed
287 288 289 290
            if len(cur_profit_ratio) < 1:
                cur_month_profit_ratio = 0
            else:
                cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
291 292 293 294 295 296 297 298 299 300 301 302 303 304
        report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)

        # 今年累积收益
        cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
        cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
        cur_year_profit = cur_year_profit_df.sum().sum()
        report_data["cur_year_profit"] = float(cur_year_profit)

        # 今年累积收益率
        last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
        cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
        if len(last_profit_ratio) <= 0:
            cur_year_profit_ratio = cur_profit_ratio[-1] - 1
        else:
305 306 307 308 309 310 311
            if len(cur_profit_ratio) < 1:
                cur_year_profit_ratio = 0.0
            else:
                if len(cur_profit_ratio) < 1:
                    cur_year_profit_ratio = 0
                else:
                    cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)

        # 月度回报
        def year_month(x):
            a = x.year
            b = x.month
            return str(a) + "/" + str(b)

        profit_df_cp = profit_df.copy()
        profit_df_cp["date"] = profit_df_cp.index
        grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
        sum_group = grouped.agg(np.sum)
        month_sum = sum_group.sum(axis=1)

        return_ratio_df["date"] = return_ratio_df.index
        return_group = return_ratio_df.groupby(return_ratio_df["date"].apply(year_month))
        month_last_return_ratio = return_group.last()["cum_return_ratio"]
329 330

        month_sum = month_sum[month_sum.index.isin(month_last_return_ratio.index.values)]
赵杰's avatar
赵杰 committed
331 332 333 334 335
        month_result = pd.DataFrame({"date": month_sum.index, "profit": month_sum.values, "ratio": month_last_return_ratio.values})
        month_result["datetime"] = pd.to_datetime(month_result["date"])
        month_result.sort_values(by="datetime", inplace=True)
        report_data["month_return"] = month_result

赵杰's avatar
赵杰 committed
336 337 338 339 340 341 342 343 344
        #
        amount_df["date"] = amount_df.index
        grouped_amount = amount_df.groupby(amount_df["date"].apply(year_month))
        month_amount = grouped_amount.last()
        del month_amount["date"]
        month_amount_sum = month_amount.sum(axis=1)

        # 月度回报表格数据
        start_year = self.start_date.year
赵杰's avatar
赵杰 committed
345
        now_year = self.end_date.year
赵杰's avatar
赵杰 committed
346 347
        month_return_data_dict = {}
        for i in range(now_year-start_year+1):
赵杰's avatar
赵杰 committed
348
            month_return_data_dict[str(start_year+i)] = {str(j+1): {"profit": "-", "net_amount": "-"} for j in range(12)}
赵杰's avatar
赵杰 committed
349
        for d_index, d_row in month_sum.items():
赵杰's avatar
赵杰 committed
350 351
            cur_year = str(int(d_index[:4]))
            cur_month = str(int(d_index[5:]))
赵杰's avatar
赵杰 committed
352 353
            cur_profit = round(d_row/10000.0, 2)
            cur_net_amount = round(month_amount_sum.loc[d_index]/10000, 2)
赵杰's avatar
赵杰 committed
354 355
            month_return_data_dict[cur_year][cur_month]["profit"] = "%.2f"%cur_profit
            month_return_data_dict[cur_year][cur_month]["net_amount"] = "%.2f"%cur_net_amount
赵杰's avatar
赵杰 committed
356 357
        # 组合月度回报表
        report_data["month_return_data_dict"] = month_return_data_dict
赵杰's avatar
赵杰 committed
358 359 360 361 362 363 364 365 366 367

        # # 贡献分解
        # month_earn = sum_group.div(month_sum, axis='rows')
        # report_data["contribution_decomposition"] = month_earn

        # 累积收益率
        cumulative_return = return_ratio_df["cum_return_ratio"].values[-1]
        report_data["cumulative_return"] = float(cumulative_return)

        # 对应指数数据
赵杰's avatar
赵杰 committed
368
        index_df = self.get_customer_index_nav_data().dropna()
赵杰's avatar
赵杰 committed
369 370 371
        index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)], "index")
        report_data["index_result"] = index_result

赵杰's avatar
赵杰 committed
372
        # self.__month_return(cur_folio_result_cnav_data, fund_id_list)
赵杰's avatar
赵杰 committed
373 374 375 376 377 378 379 380 381 382 383 384

        self.total_result_data = report_data
        return report_data

    # 基金净值数据,持仓数据
    def group_fund_basic_info_data(self, p_order_df, p_result_cnav_data, p_sum_profit, p_total_amount):
        group_fund_basic_info = []
        group_fund_hoding_info = []
        freq_max = p_order_df["freq"].max()
        n_freq = freq_days(int(freq_max))
        resample_df = resample(p_result_cnav_data, self.trade_cal_date, freq_max)
        for index, row in p_order_df.iterrows():
赵杰's avatar
赵杰 committed
385 386
            if row['order_type'] == 2 or row["confirm_share"] <= 0:
                continue
赵杰's avatar
赵杰 committed
387 388
            cur_fund_id = str(row["fund_id"])
            cur_fund_performance = self.all_fund_performance[cur_fund_id]
赵杰's avatar
赵杰 committed
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
            if len(cur_fund_performance) <=0:
                fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"], 4)}
                fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["ret_1w"] = "-"  # 上周
                fund_basic_info["ret_cum_1m"] = "-"  # 最近一个月
                fund_basic_info["ret_cum_6m"] = "-"  # 最近半年
                fund_basic_info["ret_cum_1y"] = "-"  # 最近一年
                fund_basic_info["ret_cum_ytd"] = "-"  # 今年以来
                fund_basic_info["ret_cum_incep"] = "-"  # 成立以来

                # 申购以来
                confirm_date = pd.to_datetime(row["confirm_share_date"])
                confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
                fund_basic_info["ret_after_confirm"] = round(
                    (fund_basic_info["cur_cnav"] - confirm_cnav) / confirm_cnav * 100, 2)
                # 分红
                distribution_df = self.all_fund_distribution[cur_fund_id]
                if distribution_df.empty:
                    fund_basic_info["distribution"] = "-"
                else:
                    distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
                    distribution = float(
                        distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
                    fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"
赵杰's avatar
赵杰 committed
414
            else:
赵杰's avatar
赵杰 committed
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
                cur_fund_info_series = cur_fund_performance.iloc[-1]
                # 基金净值数据
                fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"],4)}
                fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["ret_1w"] = str(round(cur_fund_info_series["ret_1w"]*100, 2)) + "%" if cur_fund_info_series["ret_1w"] is not None else "-"    # 上周
                fund_basic_info["ret_cum_1m"] = str(round(cur_fund_info_series["ret_cum_1m"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_1m"] is not None else "-"  # 最近一个月
                fund_basic_info["ret_cum_6m"] = str(round(cur_fund_info_series["ret_cum_6m"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_6m"] is not None else "-"  # 最近半年
                fund_basic_info["ret_cum_1y"] = str(round(cur_fund_info_series["ret_cum_1y"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_1y"] is not None else "-"  # 最近一年
                fund_basic_info["ret_cum_ytd"] = str(round(cur_fund_info_series["ret_cum_ytd"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_ytd"] is not None else "-"    # 今年以来
                fund_basic_info["ret_cum_incep"] = str(round(cur_fund_info_series["ret_cum_incep"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_incep"] is not None else "-"    # 成立以来
                # 申购以来
                confirm_date = pd.to_datetime(row["confirm_share_date"])
                confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
                fund_basic_info["ret_after_confirm"] = str(round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)) + "%"
                # 分红
                distribution_df = self.all_fund_distribution[cur_fund_id]
                if distribution_df.empty:
                    fund_basic_info["distribution"] = "-"
                else:
                    distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
                    distribution = float(distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
                    fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"
赵杰's avatar
赵杰 committed
438 439 440 441 442

            group_fund_basic_info.append(fund_basic_info)

            # 基金持仓数据
            total_market_values = p_sum_profit + p_total_amount #   月末总市值
赵杰's avatar
赵杰 committed
443
            fund_strategy_name = dict_substrategy[int(row["substrategy"])]
444
            if "长富" in row["fund_name"] or "盈沛" in row["fund_name"]:
赵杰's avatar
赵杰 committed
445 446
                fund_strategy_name = "FOF"
            fund_hoding_info = {"fund_strategy_name": fund_strategy_name, "fund_name": row["fund_name"]}
447
            fund_hoding_info["confirm_date"] = row["confirm_share_date"].strftime("%Y-%m-%d")
赵杰's avatar
赵杰 committed
448
            fund_hoding_info["hold_year"] = "%.2f" % round((self.end_date - pd.to_datetime(row["confirm_share_date"])).days/365.0, 2)    # 存续年数
赵杰's avatar
赵杰 committed
449
            fund_hoding_info["market_values"] = round((float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"]))/10000, 2)
赵杰's avatar
赵杰 committed
450
            temp_market_values = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"])
赵杰's avatar
赵杰 committed
451 452
            fund_hoding_info["weight"] = "%.2f" % round(float(fund_hoding_info["market_values"]) / total_market_values * 10000.0 * 100, 2)  # 月末占比
            fund_hoding_info["cost"] = "%.2f" % round(float(row["confirm_amount"])/10000, 2)     # 投资本金
赵杰's avatar
赵杰 committed
453
            # 当月收益
赵杰's avatar
赵杰 committed
454 455 456 457 458 459 460
            if row['confirm_share_date'] > self.month_start_date:
                cal_month_start_date = row['confirm_share_date']
                last_month_cnav_serise = p_result_cnav_data[p_result_cnav_data.index == pd.to_datetime(cal_month_start_date)][
                    row["fund_id"]].dropna()
            else:
                cal_month_start_date = self.month_start_date - datetime.timedelta(days=1)
                last_month_cnav_serise = p_result_cnav_data[p_result_cnav_data.index<pd.to_datetime(cal_month_start_date)][row["fund_id"]].dropna()
赵杰's avatar
赵杰 committed
461 462
            if len(last_month_cnav_serise) == 0:
                fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) / 10000, 2)
赵杰's avatar
赵杰 committed
463 464
                temp_profit = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav)
                temp_profit_ratio = (fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav
赵杰's avatar
赵杰 committed
465 466 467
            else:
                last_month_cnav = float(last_month_cnav_serise.values[-1])
                fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - last_month_cnav)/10000, 2)
赵杰's avatar
赵杰 committed
468 469
                temp_profit = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - last_month_cnav)
                temp_profit_ratio = (fund_basic_info["cur_cnav"] - last_month_cnav) / last_month_cnav
赵杰's avatar
赵杰 committed
470
            # 当月收益率
赵杰's avatar
赵杰 committed
471 472
            # fund_hoding_info["month_return_ratio"] = "%.2f" % round(temp_profit / temp_market_values*100, 2)
            fund_hoding_info["month_return_ratio"] = "%.2f" % round(temp_profit_ratio * 100, 2)
赵杰's avatar
赵杰 committed
473
            # 累积收益
赵杰's avatar
赵杰 committed
474
            fund_hoding_info["cum_profit"] = "%.2f" % round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) / 10000, 2)
赵杰's avatar
赵杰 committed
475
            # 累积收益率
赵杰's avatar
赵杰 committed
476
            fund_hoding_info["cum_profit_ratio"] = "%.2f" % round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)
赵杰's avatar
赵杰 committed
477
            cum_profit_ratio_temp = (fund_basic_info["cur_cnav"] - confirm_cnav) / confirm_cnav
赵杰's avatar
赵杰 committed
478 479
            # 累积年化收益率
            cur_resample_df = resample_df[[row["fund_id"]]].dropna()
赵杰's avatar
赵杰 committed
480
            return_ratio_year = annual_return(float(cum_profit_ratio_temp), cur_resample_df, n_freq)
赵杰's avatar
赵杰 committed
481
            fund_hoding_info["return_ratio_year"] = "%.2f" % round(float(return_ratio_year)*100, 2)
赵杰's avatar
赵杰 committed
482 483 484 485 486 487 488 489 490 491 492 493 494
            group_fund_hoding_info.append(fund_hoding_info)
        return group_fund_basic_info, group_fund_hoding_info

    @staticmethod
    def combination_yield(p_combina_df, fund_id_list):
        fund_id_list_amount = [i + "_net_amount" for i in fund_id_list]
        fund_id_list_profit_ratio = [i + "_profit_ratio" for i in fund_id_list]


        nav_net_amount_df = p_combina_df[fund_id_list + fund_id_list_amount+fund_id_list_profit_ratio].copy()
        # nav_net_amount_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
        nav_net_amount_df["sum_net_amount"] = nav_net_amount_df[fund_id_list_amount].sum(axis=1).apply(lambda x: Decimal.from_float(x))
        for amount_name in fund_id_list:
495 496 497 498 499 500 501
            price = nav_net_amount_df[amount_name].dropna()
            profit = price.diff().fillna(Decimal(0))
            profit_ratio_new = profit / price.shift(1)
            profit_ratio_old = nav_net_amount_df[amount_name+"_profit_ratio"]
            nan_index = profit_ratio_new[pd.isna(profit_ratio_new)].index
            profit_ratio_new[nan_index] = profit_ratio_old[nan_index]
            nav_net_amount_df[amount_name + "_profit_ratio"] = profit_ratio_new
赵杰's avatar
赵杰 committed
502
            nav_net_amount_df[amount_name+"_amount_ratio"] = nav_net_amount_df[amount_name+"_net_amount"]/(nav_net_amount_df["sum_net_amount"])
503

赵杰's avatar
赵杰 committed
504
            fund_profit_ratio = nav_net_amount_df[amount_name + "_profit_ratio"].dropna() + 1
505 506
            amount_ratio_shift = nav_net_amount_df[amount_name + "_amount_ratio"].shift(1)
            num_va = len(amount_ratio_shift[amount_ratio_shift.values==0])
赵杰's avatar
赵杰 committed
507
            if num_va+1 >= len(amount_ratio_shift):
赵杰's avatar
赵杰 committed
508 509 510
                amount_ratio_shift.iloc[num_va] = 0
            else:
                amount_ratio_shift.iloc[num_va] = amount_ratio_shift.values[num_va+1]
511 512
            nav_net_amount_df[amount_name + "_profit_ratio_weight"] =  amount_ratio_shift * nav_net_amount_df[amount_name + "_profit_ratio"]
            nav_net_amount_df[amount_name + "_profit_cum_ratio_weight"] = (fund_profit_ratio.cumprod()-1)*amount_ratio_shift # enter_date = nav_net_amount_df[amount_name+"_profit_ratio"].dropna()
赵杰's avatar
赵杰 committed
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

        fund_id_list_profit_ratio_weight = [i + "_profit_ratio_weight" for i in fund_id_list]
        nav_profit_ratio_weight = nav_net_amount_df[fund_id_list_profit_ratio_weight].copy().fillna(method='ffill')

        # 组合收益率
        return_ratio = nav_profit_ratio_weight.sum(axis=1)

        # 组合累积收益率
        # return_ratio_list = list(return_ratio.values)
        cum_return_ratio = (return_ratio + 1).fillna(0).cumprod()

        # 收益率df
        cum_return_ratio_df = pd.DataFrame(return_ratio.values, columns=["return_ratio"])
        cum_return_ratio_df["cum_return_ratio"] = cum_return_ratio.values
        cum_return_ratio_df.index = return_ratio.index

        # 单个基金累计收益分解df
        weight_name_list = [i + "_profit_cum_ratio_weight"  for i in fund_id_list]
        signal_fund_cum_weight = nav_net_amount_df[weight_name_list]
        re_name = {x: x.replace("_profit_cum_ratio_weight", "") for x in weight_name_list}
        signal_fund_cum_weight.rename(columns=re_name, inplace=True)

        # 月度分组
        def year_month(x):
            a = x.year
            b = x.month
            return str(a) + "/" + str(b)

        profit_df_cp = signal_fund_cum_weight.copy()
        profit_df_cp["date"] = list(profit_df_cp.index)
        grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
        month_signal_fund_cum = grouped.last()
        month_signal_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
        month_signal_fund_cum.sort_values(by="datetime", inplace=True)
        del month_signal_fund_cum["datetime"]

        p_cum_df = cum_return_ratio_df.copy()
        p_cum_df["date"] = list(p_cum_df.index)
        cum_grouped = p_cum_df.groupby(p_cum_df["date"].apply(year_month))
        month_fund_cum = cum_grouped.last()
        month_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
        month_fund_cum.sort_values(by="datetime", inplace=True)
        del month_fund_cum["datetime"]

        return cum_return_ratio_df, month_fund_cum, month_signal_fund_cum

    @staticmethod
    def signal_fund_profit_result(p_fund_nav_df, cur_fund_id):
        result = {"fund_id": cur_fund_id}
        fund_nav_df = p_fund_nav_df.copy()
        profit = fund_nav_df[cur_fund_id].dropna() - fund_nav_df[cur_fund_id].dropna().shift(1)
        fund_nav_df[cur_fund_id + "_profit"] = profit
        fund_nav_df[cur_fund_id + "_profit_ratio"] = profit / fund_nav_df[cur_fund_id].dropna().shift(1)

        # 累积收益率
        return_ratio_list = list(fund_nav_df[cur_fund_id + "_profit_ratio"].astype("float64").values)
        cum_return_ratio = []
        last_ratio = 0
        for i in range(len(return_ratio_list)):
            if i == 0:
                last_ratio = 1 + return_ratio_list[i] if str(return_ratio_list[0]) != 'nan' else 1
                cum_return_ratio.append(last_ratio)
                continue

            cur_ratio = (1 + return_ratio_list[i]) * last_ratio
            cum_return_ratio.append(cur_ratio)
            last_ratio = cur_ratio

        fund_nav_df['cum_return_ratio'] = cum_return_ratio

        # 区间收益率
        result["return_ratio"] = cum_return_ratio[-1]

        # 区间年化收益
        n_freq = freq_days(1)
        return_ratio_year = annual_return((fund_nav_df["cum_return_ratio"].values[-1] - 1), fund_nav_df, n_freq)
        result["return_ratio_year"] = float(return_ratio_year)

        # 波动率
        volatility_ = volatility(fund_nav_df["cum_return_ratio"], n_freq)
593
        result["volatility"] = float(volatility_) if not math.isnan(volatility_) else 0.0
赵杰's avatar
赵杰 committed
594 595 596 597 598 599 600 601

        # 最大回撤
        drawdown = max_drawdown(fund_nav_df["cum_return_ratio"])
        result["max_drawdown"] = drawdown

        # 夏普比率
        sim = simple_return(fund_nav_df["cum_return_ratio"])
        exc = excess_return(sim, BANK_RATE, n_freq)
602 603 604 605
        try:
            sharpe = sharpe_ratio(exc, sim, n_freq)
        except ZeroDivisionError:
            sharpe = 0.0
赵杰's avatar
赵杰 committed
606 607 608 609 610 611 612
        result["sharpe"] = float(sharpe)

        return result

    def get_month_return_chart(self):
        res = self.total_result_data["month_return"]
        xlabels = res["date"].values
赵杰's avatar
赵杰 committed
613
        res["profit"] = res["profit"].apply(lambda x: round(x/10000.0, 2))
赵杰's avatar
赵杰 committed
614 615 616 617 618 619 620 621 622 623 624 625
        res["ratio"] = res["ratio"].apply(lambda x: round((x-1)*100, 2))
        product_list = {'name': '月度回报', 'data': res["profit"].values}
        cumulative = {'name': '累积收益', 'data': res["ratio"].values}

        return xlabels, [product_list], cumulative

    def get_total_basic_data(self):
        return self.total_result_data

    def get_group_data(self):
        return self.group_result_data

赵杰's avatar
赵杰 committed
626 627 628 629 630 631 632 633 634
    # def __month_return(self, folio_cnav_data):
    #     # 月度回报
    #     def year_month(x):
    #         a = x.year
    #         b = x.month
    #         return str(a) + "-" + str(b)
    #     p_folio_cnav_data = folio_cnav_data.copy()
    #     p_folio_cnav_data["date"] = p_folio_cnav_data.index
    #     grouped_data = p_folio_cnav_data.groupby(p_folio_cnav_data["date"].apply(year_month))