fund_rank.py 13.1 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6
# db = create_engine(
#     'mysql+pymysql://tamp_fund:@imeng408@tamper.mysql.polardb.rds.aliyuncs.com:3306/tamp_fund?charset=utf8mb4',
#     pool_size=50,
#     pool_recycle=3600,
#     pool_pre_ping=True)
# con = db.connect()
李宗熹's avatar
李宗熹 committed
7

李宗熹's avatar
李宗熹 committed
8
import logging
李宗熹's avatar
李宗熹 committed
9
logging.basicConfig(level=logging.INFO)
李宗熹's avatar
李宗熹 committed
10

李宗熹's avatar
李宗熹 committed
11
from app.api.engine import tamp_fund_engine, TAMP_SQL, tamp_product_engine
李宗熹's avatar
李宗熹 committed
12
from app.utils.week_evaluation import *
李宗熹's avatar
李宗熹 committed
13 14


李宗熹's avatar
李宗熹 committed
15 16 17 18 19 20
# con = pymysql.connect(host='tamper.mysql.polardb.rds.aliyuncs.com',
#                       user='tamp_fund',
#                       password='@imeng408',
#                       database='tamp_fund',
#                       charset='utf8',
#                       use_unicode='True')
李宗熹's avatar
李宗熹 committed
21 22


李宗熹's avatar
李宗熹 committed
23 24 25 26 27 28 29 30 31 32 33 34
def get_nav(fund, start_date, rollback=False, invest_type='public'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
35 36
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
37 38 39
        if invest_type == 'public':
            sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
                  "WHERE ts_code='{}'".format(fund)
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
40
            cur = tamp_product_session.execute(sql)
李宗熹's avatar
李宗熹 committed
41
            data = cur.fetchall()
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
42 43
            df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'adj_nav']).dropna(how='any')
            df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
李宗熹's avatar
李宗熹 committed
44 45 46 47 48 49
        else:
            sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
                  "WHERE fund_id='{}'".format(fund)
            # df = pd.read_sql(sql, con).dropna(how='any')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
50 51
            df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
            df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)
李宗熹's avatar
李宗熹 committed
52

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
53 54 55
        if df['adj_nav'].count() == 0:
            logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
            return None
李宗熹's avatar
李宗熹 committed
56

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
57
        df['end_date'] = pd.to_datetime(df['end_date'])
李宗熹's avatar
李宗熹 committed
58

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
59 60
        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
李宗熹's avatar
李宗熹 committed
61 62
                start_date -= datetime.timedelta(days=1)

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
63 64 65 66 67
        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
        return df
李宗熹's avatar
李宗熹 committed
68 69 70


def get_frequency(df):
李宗熹's avatar
李宗熹 committed
71 72 73 74 75 76 77 78
    """获取基金净值一年当中公布的频率

    Args:
        df[DataFrame]:以基金净值公布日期为索引的基金净值表

    Returns:[int]: 年公布频率;查询失败则返回ValueError

    """
李宗熹's avatar
李宗熹 committed
79
    index_series = df.index.to_series()
李宗熹's avatar
李宗熹 committed
80 81 82
    # freq_series = index_series - index_series.shift(1)
    freq_series = index_series.diff(1)
    logging.log(logging.DEBUG, freq_series.describe())
赵杰's avatar
赵杰 committed
83 84 85 86
    try:
        f = freq_series.mode()[0].days
    except:
        return 250
李宗熹's avatar
李宗熹 committed
87 88 89 90 91 92 93 94 95 96 97
    if f in range(0, 3):
        return 250
    elif f in range(6, 9):
        return 52
    elif f in range(13, 18):
        return 24
    elif f in range(28, 33):
        return 12
    elif f in range(110, 133):
        return 3
    else:
赵杰's avatar
赵杰 committed
98
        return 250
李宗熹's avatar
李宗熹 committed
99 100


李宗熹's avatar
李宗熹 committed
101 102
def get_trade_cal():
    """获取上交所交易日历表
李宗熹's avatar
李宗熹 committed
103

李宗熹's avatar
李宗熹 committed
104
    Returns:df[DataFrame]: 索引为交易日, 列为交易日的上交所交易日历表
李宗熹's avatar
李宗熹 committed
105

李宗熹's avatar
李宗熹 committed
106
    """
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
107 108
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
109
        sql = 'SELECT cal_date FROM stock_trade_cal WHERE is_open=1'
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
110
        cur = tamp_product_session.execute(sql)
李宗熹's avatar
李宗熹 committed
111 112 113 114 115 116
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['cal_date']).dropna(how='all')
        # df = pd.read_sql(sql, con)
        df['end_date'] = pd.to_datetime(df['cal_date'])
        df.set_index('end_date', drop=False, inplace=True)
        return df
李宗熹's avatar
李宗熹 committed
117 118 119 120 121 122 123 124 125 126 127


def get_manager(invest_type):
    """获取基金对应基金经理表

    Args:
        invest_type: 资产类型:公募, 私募等

    Returns:

    """
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
128 129
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
130 131 132
        if invest_type == 'public':
            sql = 'SELECT ts_code, name FROM public_fund_manager WHERE end_date IS NULL'
            # df = pd.read_sql(sql, con)
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
133
            cur = tamp_product_session.execute(sql)
李宗熹's avatar
李宗熹 committed
134
            data = cur.fetchall()
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
135
            df = pd.DataFrame(list(data), columns=['ts_code', 'name'])
李宗熹's avatar
李宗熹 committed
136
        else:
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
137
            sql = 'SELECT fund_id, fund_manager_id FROM fund_manager_mapping'
李宗熹's avatar
李宗熹 committed
138 139 140
            # df = pd.read_sql(sql, con)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
141 142
            df = pd.DataFrame(list(data), columns=['fund_id', 'fund_manager_id'])
        return df
李宗熹's avatar
李宗熹 committed
143 144


李宗熹's avatar
李宗熹 committed
145 146 147 148 149 150 151 152 153 154
def get_fund_info(end_date, invest_type):
    """[summary]

    Args:
        end_date ([type]): [description]
        invest_type ([type]): [description]

    Returns:
        [type]: [description]
    """
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
155 156
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
157 158 159 160
        if invest_type == 'public':
            sql = "SELECT ts_code, fund_type, management FROM public_fund_basic " \
                  "WHERE delist_date IS NULL AND (due_date IS NULL OR due_date>'{}')".format(end_date.strftime('%Y%m%d'))
            # df = pd.read_sql(sql, con).dropna(how='all')
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
161
            cur = tamp_product_session.execute(sql)
李宗熹's avatar
李宗熹 committed
162 163
            data = cur.fetchall()

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
164 165
            df = pd.DataFrame(list(data), columns=['ts_code', 'fund_type', 'management'])
            manager_info = get_manager(invest_type)
李宗熹's avatar
李宗熹 committed
166

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
167 168
            df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
            df = pd.merge(df, manager_info, how="left", on='fund_id')
李宗熹's avatar
李宗熹 committed
169
        else:
李宗熹's avatar
李宗熹 committed
170

李宗熹's avatar
李宗熹 committed
171 172 173 174
            sql = "SELECT id, substrategy FROM fund_info WHERE delete_tag=0 " \
                  "AND substrategy!=-1"
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
175
            df = pd.DataFrame(list(data), columns=['id', 'substrategy'])
李宗熹's avatar
李宗熹 committed
176 177
            # df = pd.read_sql(sql, con).dropna(how='all')

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
178 179 180 181
            df.rename({'id': 'fund_id'}, axis=1, inplace=True)
            manager_info = get_manager(invest_type)
            df = pd.merge(df, manager_info, how="inner", on='fund_id')
        return df
李宗熹's avatar
李宗熹 committed
182 183


李宗熹's avatar
李宗熹 committed
184
def resample(df, trading_cal, freq, simple_flag=True):
李宗熹's avatar
李宗熹 committed
185 186 187 188 189 190 191 192 193 194 195 196 197
    """对基金净值表进行粒度不同的重采样,并剔除不在交易日中的结果

    Args:
        df ([DataFrame]): [原始基金净值表]
        trading_cal ([DataFrame]): [上交所交易日表]
        freq ([int]): [重采样频率: 1:工作日,2:周, 3:月, 4:半月, 5:季度]

    Returns:
        [DataFrame]: [重采样后剔除不在交易日历中的净值表和交易日历以净值日期为索引的合表]
    """
    freq_dict = {250: 'B', 52: 'W-FRI', 12: 'M', 24: 'SM', 3: 'Q'}
    resample_freq = freq_dict[freq]
    # 按采样频率进行重采样并进行净值的前向填充
李宗熹's avatar
李宗熹 committed
198 199 200 201 202 203 204
    df = df.resample(rule=resample_freq, closed='right').ffill()

    # 计算年化指标时简化重采样过程
    if simple_flag and freq == 250:
        return pd.merge(df, trading_cal, how='inner', left_index=True, right_index=True)
    elif simple_flag and freq != 250:
        return df
李宗熹's avatar
李宗熹 committed
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

    # 根据采样频率确定最大日期偏移量(保证偏移后的日期与重采样的日期在同一周,同一月,同一季度等)
    timeoffset_dict = {250: 1, 52: 5, 12: 30, 24: 15, 3: 120}
    timeoffsetmax = timeoffset_dict[freq]

    # Dataframe不允许直接修改index,新建一份index的复制并转为list
    new_index = list(df.index)
    # 遍历重采样后的日期
    for idx, date in enumerate(df.index):
        # 如果重采样后的日期不在交易日历中
        if date not in trading_cal['end_date']:
            # 对重采样后的日期进行偏移
            for time_offset in range(1, timeoffsetmax):
                # 如果偏移后的日期在交易日历中,保留偏移后的日期
                if date - datetime.timedelta(days=time_offset) in trading_cal['end_date']:
                    new_index[idx] = date - datetime.timedelta(days=time_offset)
                    # 任意一天满足立即退出循环
                    break

    # 更改净值表的日期索引为重采样后且在交易日内的日期
    df.index = pd.Series(new_index)
    return pd.merge(df, trading_cal, how='inner', left_index=True, right_index=True)


def z_score(annual_return_rank, downside_risk_rank, max_drawdown_rank, sharp_ratio_rank):
    return 25 * annual_return_rank + 25 * downside_risk_rank + 25 * max_drawdown_rank + 25 * sharp_ratio_rank


def cal_date(date, period_type, period):
    year, month, day = map(int, date.strftime('%Y-%m-%d').split('-'))
    if period_type == 'Y':
        cal_year = year - period
        return datetime.datetime(cal_year, month, day)
    elif period_type == 'm':
        cal_month = month - period
        if cal_month > 0:
            return datetime.datetime(year, cal_month, day)
        else:
            return datetime.datetime(year - 1, cal_month + 12, day)
    elif period_type == 'd':
        return date - datetime.timedelta(days=period)


def metric_rank(df):
李宗熹's avatar
李宗熹 committed
249
    for metric in ['annual_return', 'downside_risk', 'max_drawdown', 'sharp_ratio']:
李宗熹's avatar
李宗熹 committed
250 251 252 253
        if metric in ['downside_risk', 'max_drawdown']:
            ascending = False
        else:
            ascending = True
李宗熹's avatar
李宗熹 committed
254
        df['{}_rank'.format(metric)] = df.groupby(['substrategy'])[metric].rank(ascending=ascending, pct=True)
李宗熹's avatar
李宗熹 committed
255 256 257
    return df


李宗熹's avatar
李宗熹 committed
258 259 260 261 262
def fund_rank(start_date, end_date, invest_type='private'):
    fund_info = get_fund_info(end_date, invest_type=invest_type)

    group = fund_info.groupby('substrategy')
    grouped_fund = group['fund_id'].unique()
李宗熹's avatar
李宗熹 committed
263

李宗熹's avatar
李宗熹 committed
264
    trading_cal = get_trade_cal()
李宗熹's avatar
李宗熹 committed
265

李宗熹's avatar
李宗熹 committed
266 267
    metric_df = pd.DataFrame(columns=('fund_id', 'range_return', 'annual_return', 'max_drawdown', 'sharp_ratio',
                                      'volatility', 'sortino_ratio', 'downside_risk', 'substrategy'))
李宗熹's avatar
李宗熹 committed
268 269

    skipped_funds = []
李宗熹's avatar
李宗熹 committed
270 271
    for substrategy in grouped_fund.index:
        for fund in grouped_fund[substrategy]:
李宗熹's avatar
李宗熹 committed
272

李宗熹's avatar
李宗熹 committed
273
            df = get_nav(fund, start_date, rollback=False, invest_type=invest_type)
李宗熹's avatar
李宗熹 committed
274 275 276 277

            try:
                if df.index[-1] - df.index[0] < 0.6 * (end_date - start_date):
                    skipped_funds.append(fund)
李宗熹's avatar
李宗熹 committed
278 279
                    logging.log(logging.INFO, 'Skipped {}'.format(fund))
                    continue
李宗熹's avatar
李宗熹 committed
280 281
                n = get_frequency(df)
            except Exception as e:
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
282
                # logging.log(logging.ERROR, repr(e))
李宗熹's avatar
李宗熹 committed
283 284 285
                logging.log(logging.INFO, 'Skipped {}'.format(fund))
                continue

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
286
            df = resample(df, trading_cal, n)
李宗熹's avatar
李宗熹 committed
287 288 289 290 291

            try:
                _ = get_frequency(df)
            except ValueError:
                continue
李宗熹's avatar
李宗熹 committed
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

            logging.log(logging.INFO, "Dealing with {}".format(fund))
            net_worth = df['adj_nav'].astype(float)

            end_df, begin_df = net_worth.values[-1], net_worth.values[0]

            sim_return = simple_return(net_worth)
            ex_return = excess_return(sim_return, bank_rate=0.015, n=n)
            drawdown = float(max_drawdown(net_worth)[0])
            shp_ratio = sharpe_ratio(ex_return, sim_return, n)
            rng_return = float(range_return(end_df, begin_df))
            ann_return = annual_return(rng_return, net_worth, n)
            vol = volatility(sim_return, n)
            down_risk = downside_risk(sim_return, bank_rate=0.015, n=n)
            sor_ratio = sortino_ratio(ex_return, down_risk, n)

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
308
            manager = fund_info[fund_info['fund_id'] == fund]['fund_manager_id'].values
李宗熹's avatar
李宗熹 committed
309
            # management = fund_info[fund_info['fund_id'] == fund]['management'].values
李宗熹's avatar
李宗熹 committed
310 311

            row = pd.Series([fund, rng_return, ann_return, drawdown, shp_ratio,
李宗熹's avatar
李宗熹 committed
312 313
                             vol, sor_ratio, down_risk, substrategy, manager],
                            index=['fund_id', 'range_return', 'annual_return', 'max_drawdown',
李宗熹's avatar
李宗熹 committed
314
                                   'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
李宗熹's avatar
李宗熹 committed
315
                                   'substrategy', 'manager'])
李宗熹's avatar
李宗熹 committed
316
            metric_df = metric_df.append(row, ignore_index=True)
李宗熹's avatar
李宗熹 committed
317
    metric_df.set_index('fund_id', inplace=True)
李宗熹's avatar
李宗熹 committed
318 319 320 321 322 323 324 325 326 327 328 329

    df = metric_rank(metric_df)
    df['z_score'] = z_score(df['annual_return_rank'],
                            df['downside_risk_rank'],
                            df['max_drawdown_rank'],
                            df['sharp_ratio_rank'])
    return df


if __name__ == '__main__':
    end_date = datetime.datetime.now() - datetime.timedelta(days=1)
    start_date = cal_date(end_date, 'Y', 1)
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
330 331 332
    fund_rank = fund_rank(start_date, end_date, False)
    # fund_rank.to_csv("fund_rank.csv", encoding='gbk')
    # df = pd.read_csv('fund_rank.csv')
李宗熹's avatar
李宗熹 committed
333
    # df.to_sql("fund_rank", con, if_exists='replace')
李宗熹's avatar
李宗熹 committed
334
    # con.close()