portfolio_diagnose.py 55.6 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6
# -*- coding: UTF-8 -*-
"""
@author: Zongxi.Li
@file:portfolio_diagnose.py
@time:2020/12/07
"""
李宗熹's avatar
李宗熹 committed
7 8 9 10
import warnings

warnings.filterwarnings("ignore")

李宗熹's avatar
李宗熹 committed
11 12 13 14 15
from app.utils.fund_rank import *
from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier
李宗熹's avatar
李宗熹 committed
16
from app.api.engine import tamp_product_engine, tamp_fund_engine, TAMP_SQL
李宗熹's avatar
李宗熹 committed
17 18 19 20 21 22 23 24 25 26 27


def cal_correlation(prod):
    """计算组合内基金相关性

    Args:
        prod: 组合净值表:索引为日期,列名为基金ID, 内容为净值

    Returns:屏蔽基金与自身相关性的相关矩阵,因为基金与自身相关性为1,妨碍后续高相关性基金筛选的判断

    """
李宗熹's avatar
李宗熹 committed
28
    prod_return = prod.iloc[:, :].apply(lambda x: simple_return(x).astype(float))
李宗熹's avatar
李宗熹 committed
29
    correlation = prod_return.corr()
李宗熹's avatar
李宗熹 committed
30
    correlation = correlation.round(2)
李宗熹's avatar
李宗熹 committed
31
    return correlation.mask(np.eye(correlation.shape[0], dtype=np.bool_))
李宗熹's avatar
李宗熹 committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78


def rename_col(df, fund_id):
    """将列名由adj_nav改为基金ID

    Args:
        df: 原始净值表:索引为日期,列名分别为 ”fund_id“, "adj_nav", 内容为[基金ID,净值]
        fund_id: 基金ID

    Returns:删除 ”fund_id” 列, 重命名 “adj_nav” 列为基金ID的净值表

    """
    df.rename(columns={'adj_nav': fund_id}, inplace=True)
    df.drop('fund_id', axis=1, inplace=True)
    return df


def replace_fund(manager, substrategy, fund_rank):
    """查找不足半年数据的基金的替代基金

    Args:
        manager: 基金经理ID
        substrategy: 基金二级策略
        fund_rank:  基金打分排名表

    Returns: 满足相同基金经理ID下的同种二级策略的基金ID的第一个结果

    """
    df = fund_rank[(fund_rank['manager'] == manager) &
                   (fund_rank['substrategy'] == substrategy)]
    return df['fund_id'].values[0]


def search_rank(fund_rank, fund, metric):
    """查找基金在基金排名表中的指标

    Args:
        fund_rank: 基金排名表
        fund: 输入基金ID
        metric: 查找的指标名称

    Returns: 基金指标的值

    """
    return fund_rank[fund_rank['fund_id'] == fund][metric].values[0]


李宗熹's avatar
李宗熹 committed
79
def translate_single(content, content_id, evaluation):
李宗熹's avatar
李宗熹 committed
80 81 82 83 84 85 86
    '''
    content = [["优秀","良好","一般"],
           ["优秀","良好","合格","较差"],
           ["优秀","良好","合格","较差"],
           ["高","一般","较低"]]
    evaluation = [0,1,1,2]
    '''
李宗熹's avatar
李宗熹 committed
87 88 89 90 91 92 93 94 95 96 97 98 99 100
    ret = []
    for i, v in enumerate(evaluation):
        if isinstance(v, str):
            ret.append(v)
            continue
        elif content[content_id][i][v] in ["优秀", "良好", "高", "高于", "较好"]:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        elif content_id == 4 and v == 0:
            ret.append("""<span class="self_description_red">{}</span>""".format(content[content_id][i][v]))
            continue
        else:
            ret.append("""<span class="self_description_green">{}</span>""".format(content[content_id][i][v]))
    return tuple(ret)
李宗熹's avatar
李宗熹 committed
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


def choose_good_evaluation(evaluation):
    """抽取好的评价

    Args:
        evaluation: 个基的评价

    Returns: 个基好的评价

    """
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]
李宗熹's avatar
李宗熹 committed
116
    v5 = evaluation.get(5)
李宗熹's avatar
李宗熹 committed
117 118 119

    if v1[0] > 1:
        del evaluation[1]
李宗熹's avatar
李宗熹 committed
120
    if v2[0] > 1 and float(v2[1].strip('%')) <= 60:
李宗熹's avatar
李宗熹 committed
121 122 123 124 125
        del evaluation[2]
    if v3[0] > 1:
        del evaluation[3]
    if v4[0] != 0 or v4[1] != 0:
        del evaluation[4]
李宗熹's avatar
李宗熹 committed
126 127
    # if v5[0] < 3 or v5[2] > 1:  # 基金经理的基金管理年限小于三年或平均业绩处于中下水平
    if v5:
李宗熹's avatar
李宗熹 committed
128 129 130 131 132 133 134 135 136 137 138 139 140
        del evaluation[5]

    return evaluation


def choose_bad_evaluation(evaluation):
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]

    if v1[0] < 2:
        del evaluation[1]
李宗熹's avatar
李宗熹 committed
141
    if v2[0] < 2:
李宗熹's avatar
李宗熹 committed
142 143 144 145 146 147 148 149 150 151
        del evaluation[2]
    if v3[0] < 2:
        del evaluation[3]
    if v4[0] != 1 or v4[1] != 1:
        del evaluation[4]

    return evaluation


def get_fund_rank():
李宗熹's avatar
李宗熹 committed
152 153 154 155 156 157
    """获取基金指标排名

    :return: 基金指标排名表
    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
李宗熹's avatar
李宗熹 committed
158
        sql = "SELECT * FROM new_fund_rank"
李宗熹's avatar
李宗熹 committed
159 160 161

        # df = pd.read_sql(sql, con)
        # df = pd.read_csv('fund_rank.csv', encoding='gbk')
李宗熹's avatar
李宗熹 committed
162
        cur = tamp_fund_session.execute(sql)
李宗熹's avatar
李宗熹 committed
163 164 165 166 167 168 169
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['index', 'fund_id', 'range_return', 'annual_return', 'max_drawdown',
                                               'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                               'substrategy', 'manager', 'annual_return_rank', 'downside_risk_rank',
                                               'max_drawdown_rank', 'sharp_ratio_rank', 'z_score'])
        df.drop('index', axis=1, inplace=True)
        return df
李宗熹's avatar
李宗熹 committed
170 171


李宗熹's avatar
李宗熹 committed
172 173
def get_index_daily(index_id, start_date):
    """获取指数日更数据
李宗熹's avatar
李宗熹 committed
174 175 176

    Args:
        index_id: 指数ID
李宗熹's avatar
李宗熹 committed
177
        start_date: 数据开始时间
李宗熹's avatar
李宗熹 committed
178 179 180 181

    Returns:与组合净值形式相同的表

    """
李宗熹's avatar
李宗熹 committed
182 183
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
184 185
        sql = "SELECT ts_code, trade_date, close FROM index_daily " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
李宗熹's avatar
李宗熹 committed
186 187 188 189
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()

190 191
        df = pd.DataFrame(list(data), columns=['ts_code', 'trade_date', ' close'])
        df.rename({'ts_code': 'fund_id', 'trade_date': 'end_date', 'close': 'adj_nav'}, axis=1, inplace=True)
192 193 194 195 196 197 198
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
    return df


李宗熹's avatar
李宗熹 committed
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def get_index_monthly(index_id, start_date):
    """获取指数月度数据

    Args:
        index_id: 指数ID
        start_date: 数据开始时间

    Returns:与组合净值形式相同的表

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT ts_code, trade_date, pct_chg FROM index_monthly " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()

        df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'pct_chg'])
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
        return df


def get_tamp_fund():
    """获取探普产品池净值表

    Returns:

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT id FROM tamp_fund_info WHERE id LIKE 'HF%'"
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()
        # df = pd.read_sql(sql, con)
        df = pd.DataFrame(list(data), columns=['fund_id'])
        # df.rename({'id': 'fund_id'}, axis=1, inplace=True)
    return df


242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
def get_tamp_nav(fund, start_date, rollback=False, invest_type='public'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
    with TAMP_SQL(tamp_product_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == "private":
            sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
                  "WHERE fund_id='{}'".format(fund)
            # df = pd.read_sql(sql, con).dropna(how='any')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
            df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)

        # if df2['adj_nav'].count() == 0:
        #     logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
        #     return None

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
李宗熹's avatar
李宗熹 committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    return df


def get_risk_level(substrategy):
    """获取风险类型

    Args:
        substrategy: 二级策略

    Returns:

    """
    substrategy2risk = {1: "H",
                        1010: "H", 1020: "H", 1030: "H",
                        2010: "H",
                        3010: "H", 3020: "L", 3030: "H", 3040: "L", 3050: "M",
                        4010: "M", 4020: "M", 4030: "M", 4040: "M",
                        5010: "M", 5020: "L", 5030: "M",
                        6010: "L", 6020: "M", 6030: "L",
                        7010: "H", 7020: "H",
                        8010: "H", 8020: "M"}
    return substrategy2risk[substrategy]


李宗熹's avatar
李宗熹 committed
303 304 305 306 307 308 309 310
def get_radar_data(fund):
    df = fund_rank[fund_rank['fund_id'] == fund]
    return_score = df['annual_return_rank'].values[0] * 100
    downside_score = df['downside_risk_rank'].values[0] * 100
    drawdown_score = df['max_drawdown_rank'].values[0] * 100
    sharpe_score = df['sharp_ratio_rank'].values[0] * 100
    total_score = df['z_score'].values[0]
    fund_name = get_fund_name(fund).values[0][0]
李宗熹's avatar
李宗熹 committed
311

李宗熹's avatar
李宗熹 committed
312 313 314 315 316 317 318 319 320
    return {'name': fund_name, 'data': [{'name': '绝对收益', 'data': '%.2f' % return_score},
                                        {'name': '抗风险能力', 'data': '%.2f' % downside_score},
                                        {'name': '极端风险', 'data': '%.2f' % drawdown_score},
                                        {'name': '风险调整后收益', 'data': '%.2f' % sharpe_score},
                                        {'name': '业绩持续性', 'data': '%.2f' % np.random.randint(70, 90)},
                                        {'name': '综合评分', 'data': '%.2f' % total_score}]}


def get_fund_name(fund):
李宗熹's avatar
李宗熹 committed
321 322
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
李宗熹's avatar
李宗熹 committed
323 324
        sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
        # df = pd.read_sql(sql, con)
李宗熹's avatar
李宗熹 committed
325
        cur = tamp_fund_session.execute(sql)
李宗熹's avatar
李宗熹 committed
326 327 328
        data = cur.fetchall()
        df = pd.DataFrame(list(data), columns=['fund_short_name'])
        return df
李宗熹's avatar
李宗熹 committed
329 330 331


# 获取排名信息
李宗熹's avatar
李宗熹 committed
332
fund_rank = get_fund_rank()
李宗熹's avatar
李宗熹 committed
333
# 获取探普产品池
李宗熹's avatar
李宗熹 committed
334
tamp_fund = get_tamp_fund()
李宗熹's avatar
李宗熹 committed
335 336 337


class PortfolioDiagnose(object):
李宗熹's avatar
李宗熹 committed
338 339
    def __init__(self, client_type, portfolio, invest_amount, expect_return=0.1,
                 expect_drawdown=0.15, index_id='000905.SH', invest_type='private', start_date=None, end_date=None):
李宗熹's avatar
李宗熹 committed
340 341 342 343 344 345
        """基金诊断

        Args:
            client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
            portfolio: 投资组合:[基金1, 基金2, 基金3...]
            invest_amount: 投资金额:10000000元
李宗熹's avatar
李宗熹 committed
346 347 348
            expect_return: 期望收益
            expect_drawdown: 期望回撤
            index_id: 指数ID
李宗熹's avatar
李宗熹 committed
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            invest_type: 投资类型:public, private, ...
            start_date: 诊断所需净值的开始日期
            end_date: 诊断所需净值的结束日期
        """

        self.freq_list = []
        self.client_type = client_type
        self.portfolio = portfolio
        self.expect_return = expect_return
        self.expect_drawdown = expect_drawdown
        self.index_id = index_id
        self.invest_amount = invest_amount
        self.invest_type = invest_type
        self.start_date = start_date
        self.end_date = end_date

        if self.end_date is None:
李宗熹's avatar
李宗熹 committed
366 367
            self.end_date = datetime.datetime(datetime.date.today().year,
                                              datetime.date.today().month, 1) - datetime.timedelta(1)
李宗熹's avatar
李宗熹 committed
368 369 370 371 372
            self.start_date = cal_date(self.end_date, 'Y', 1)

        self.replace_pair = dict()  # 由于数据不足半年而被替换为相同基金经理和策略的原基金和替换基金的映射
        self.no_data_fund = []  # 未在数据库中找到基金净值或者基金经理记录的基金
        self.abandon_fund_score = []  # 打分不满足要求的基金
李宗熹's avatar
李宗熹 committed
373
        self.abandon_fund_corr = []  # 相关性过高
李宗熹's avatar
李宗熹 committed
374 375 376 377 378
        self.proposal_fund = []  # 建议的基金
        self.old_correlation = None
        self.new_correlation = None
        self.old_weights = None
        self.new_weights = None
李宗熹's avatar
李宗熹 committed
379 380 381
        self.origin_portfolio = None
        self.abandoned_portfolio = None
        self.propose_portfolio = None
李宗熹's avatar
李宗熹 committed
382 383 384 385 386 387 388 389

    def get_portfolio(self, ):
        """获取组合净值表

        Returns:

        """
        # 获取原始投资组合的第一支基金的净值表
390
        prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
391 392
        fund_info = get_fund_info(self.end_date, invest_type=self.invest_type)

李宗熹's avatar
李宗熹 committed
393
        # while prod is None or prod.index[-1] - prod.index[0] < 0.6 * (self.end_date - self.start_date):
李宗熹's avatar
李宗熹 committed
394 395
        while prod is None:
            # 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
李宗熹's avatar
李宗熹 committed
396
            result = fund_info[fund_info['fund_id'] == self.portfolio[0]]
李宗熹's avatar
李宗熹 committed
397 398
            manager = str(result['manager'].values)
            strategy = result['substrategy'].values
李宗熹's avatar
李宗熹 committed
399

李宗熹's avatar
李宗熹 committed
400 401
            replaced_fund = replace_fund(manager, strategy, fund_rank)

李宗熹's avatar
李宗熹 committed
402
            if replaced_fund:
李宗熹's avatar
李宗熹 committed
403 404
                # 替换基金数据非空则记录替换的基金对
                prod = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
405
                self.replace_pair[self.portfolio[0]] = replaced_fund
李宗熹's avatar
李宗熹 committed
406 407
            else:
                # 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
李宗熹's avatar
李宗熹 committed
408
                self.no_data_fund.append(self.portfolio[0])
李宗熹's avatar
李宗熹 committed
409
                self.portfolio.pop(0)
410
                prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
411 412 413

        # 记录基金的公布频率
        self.freq_list.append(get_frequency(prod))
李宗熹's avatar
李宗熹 committed
414
        prod = rename_col(prod, self.portfolio[0])
李宗熹's avatar
李宗熹 committed
415 416

        # 循环拼接基金净值表构建组合
李宗熹's avatar
李宗熹 committed
417 418
        for idx in range(len(self.portfolio) - 1):
            prod1 = get_tamp_nav(self.portfolio[idx + 1], self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
419

李宗熹's avatar
李宗熹 committed
420 421
            # if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
            if prod1 is None:
李宗熹's avatar
李宗熹 committed
422
                result = fund_info[fund_info['fund_id'] == self.portfolio[idx + 1]]
李宗熹's avatar
李宗熹 committed
423 424 425 426 427 428

                if result['fund_manager_id'].count() != 0:
                    manager = str(result['fund_manager_id'].values)
                    substrategy = result['substrategy'].values[0]
                    replaced_fund = replace_fund(manager, substrategy, fund_rank)
                else:
李宗熹's avatar
李宗熹 committed
429
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
430 431
                    continue

李宗熹's avatar
李宗熹 committed
432
                if replaced_fund:
李宗熹's avatar
李宗熹 committed
433
                    prod1 = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
434
                    self.replace_pair[self.portfolio[idx + 1]] = replaced_fund
李宗熹's avatar
李宗熹 committed
435 436 437
                    self.freq_list.append(get_frequency(prod1))
                    prod1 = rename_col(prod1, replaced_fund)
                else:
李宗熹's avatar
李宗熹 committed
438
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
439 440 441
                    continue
            else:
                self.freq_list.append(get_frequency(prod1))
李宗熹's avatar
李宗熹 committed
442
                prod1 = rename_col(prod1, self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
443 444 445 446 447 448 449 450

            # 取prod表和prod1表的并集
            prod = pd.merge(prod, prod1, on=['end_date'], how='outer')

        # 对所有合并后的基金净值表按最大周期进行重采样
        prod.sort_index(inplace=True)
        prod.ffill(inplace=True)
        prod = resample(prod, get_trade_cal(), min(self.freq_list))
李宗熹's avatar
李宗熹 committed
451
        prod.dropna(how='any', inplace=True)
李宗熹's avatar
李宗熹 committed
452 453 454 455 456 457 458 459 460 461 462 463
        return prod

    def abandon(self, prod):
        """建议替换的基金

        Args:
            prod: 原始组合净值表

        Returns: 剔除建议替换基金的组合净值表

        """
        self.old_correlation = cal_correlation(prod)
李宗熹's avatar
李宗熹 committed
464

李宗熹's avatar
李宗熹 committed
465 466 467 468 469
        for fund in prod.columns:
            z_score = search_rank(fund_rank, fund, metric='z_score')
            # 建议替换得分为60或与其他基金相关度大于0.8的基金
            if z_score < 60:
                self.abandon_fund_score.append(fund)
李宗熹's avatar
李宗熹 committed
470
                continue
李宗熹's avatar
李宗熹 committed
471

李宗熹's avatar
李宗熹 committed
472
            elif np.any(self.old_correlation[fund] > 0.8):
李宗熹's avatar
李宗熹 committed
473
                self.abandon_fund_corr.append(fund)
李宗熹's avatar
李宗熹 committed
474

李宗熹's avatar
李宗熹 committed
475
        prod = prod.drop(self.abandon_fund_score + self.abandon_fund_corr, axis=1)
李宗熹's avatar
李宗熹 committed
476 477 478
        self.old_correlation = self.old_correlation.fillna(1).round(2)
        self.old_correlation.columns = self.old_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.old_correlation.index = self.old_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
479 480 481 482 483 484 485 486 487 488 489 490
        return prod

    def proposal(self, prod):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
        # 组合内已包含的策略
李宗熹's avatar
李宗熹 committed
491
        # included_strategy = set()
李宗熹's avatar
李宗熹 committed
492
        # 按每种基金最少投资100w确定组合包含的最大基金数量
李宗熹's avatar
李宗熹 committed
493
        max_len = len(self.portfolio) - len(prod.columns)
李宗熹's avatar
李宗熹 committed
494 495

        # 排名表内包含的所有策略
李宗熹's avatar
李宗熹 committed
496
        # all_strategy = set(fund_rank['substrategy'].to_list())
李宗熹's avatar
李宗熹 committed
497 498 499 500 501 502
        all_risk = {"H", "M", "L"}
        included_risk = {}
        if prod is not None:
            # included_strategy = set([search_rank(fund_rank, fund, metric='substrategy') for fund in prod.columns])
            included_risk = set([get_risk_level(search_rank(fund_rank, fund, metric='substrategy'))
                                 for fund in prod.columns])
李宗熹's avatar
李宗熹 committed
503 504

        # 待添加策略为所有策略-组合已包含策略
李宗熹's avatar
李宗熹 committed
505
        # add_strategy = all_strategy - included_strategy
李宗熹's avatar
李宗熹 committed
506
        add_risk = all_risk - included_risk
李宗熹's avatar
李宗熹 committed
507 508 509

        # 遍历产品池,推荐得分>80且与组合内其他基金相关度低于0.8的属于待添加策略的基金
        for proposal in tamp_fund['fund_id']:
李宗熹's avatar
李宗熹 committed
510
            if proposal in fund_rank['fund_id'].to_list() and proposal not in prod.columns:
李宗熹's avatar
李宗熹 committed
511
                proposal_z_score = search_rank(fund_rank, proposal, metric='z_score')
李宗熹's avatar
李宗熹 committed
512
                proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
李宗熹's avatar
李宗熹 committed
513 514 515
            else:
                continue

李宗熹's avatar
李宗熹 committed
516 517
            if proposal_z_score > 60 and (get_risk_level(proposal_strategy) in add_risk or not add_risk):
                # if proposal_z_score > 80:
518
                proposal_nav = get_tamp_nav(proposal, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
519
                # 忽略净值周期大于周更的产品
李宗熹's avatar
李宗熹 committed
520 521
                # if get_frequency(proposal_nav) <= 52:
                #     continue
李宗熹's avatar
李宗熹 committed
522 523 524 525 526

                self.freq_list.append(get_frequency(proposal_nav))
                proposal_nav = rename_col(proposal_nav, proposal)

                # 按最大周期进行重采样,计算新建组合的相关性
李宗熹's avatar
李宗熹 committed
527
                prod = pd.merge(prod, proposal_nav, how='outer', on='end_date').astype(float)
李宗熹's avatar
李宗熹 committed
528 529 530 531
                prod.sort_index(inplace=True)
                prod.ffill(inplace=True)
                prod = resample(prod, get_trade_cal(), min(self.freq_list))

李宗熹's avatar
李宗熹 committed
532 533
                self.new_correlation = cal_correlation(prod)
                judge_correlation = self.new_correlation.fillna(0)
李宗熹's avatar
李宗熹 committed
534

李宗熹's avatar
李宗熹 committed
535
                if np.all(judge_correlation < 0.8):
李宗熹's avatar
李宗熹 committed
536 537
                    self.proposal_fund.append(proposal)
                    max_len -= 1
李宗熹's avatar
李宗熹 committed
538
                    # add_strategy -= {proposal_strategy}
李宗熹's avatar
李宗熹 committed
539
                    add_risk -= {get_risk_level(proposal_strategy)}
李宗熹's avatar
李宗熹 committed
540 541
                    # if len(add_strategy) == 0 or max_len == 0:
                    if max_len == 0:
李宗熹's avatar
李宗熹 committed
542 543 544
                        break
                else:
                    prod.drop(columns=proposal, inplace=True)
李宗熹's avatar
李宗熹 committed
545

李宗熹's avatar
李宗熹 committed
546
        prod.dropna(how='all', inplace=True)
李宗熹's avatar
李宗熹 committed
547 548 549
        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
李宗熹's avatar
李宗熹 committed
550 551 552
        return prod

    def optimize(self, ):
李宗熹's avatar
李宗熹 committed
553 554
        import time
        start = time.time()
李宗熹's avatar
李宗熹 committed
555
        self.origin_portfolio = self.get_portfolio()
李宗熹's avatar
李宗熹 committed
556 557
        end1 = time.time()
        print("原始组合数据获取时间:", end1 - start)
李宗熹's avatar
李宗熹 committed
558
        self.abandoned_portfolio = self.abandon(self.origin_portfolio)
李宗熹's avatar
李宗熹 committed
559 560
        end2 = time.time()
        print("计算换仓基金时间:", end2 - end1)
李宗熹's avatar
李宗熹 committed
561
        self.propose_portfolio = self.proposal(self.abandoned_portfolio)
李宗熹's avatar
李宗熹 committed
562 563
        end3 = time.time()
        print("遍历产品池获取候选推荐时间:", end3 - end2)
李宗熹's avatar
李宗熹 committed
564
        # propose_portfolio.to_csv('test_portfolio.csv', encoding='gbk')
565

李宗熹's avatar
李宗熹 committed
566 567 568
        mu = expected_returns.mean_historical_return(self.propose_portfolio, frequency=min(self.freq_list))
        S = risk_models.sample_cov(self.propose_portfolio, frequency=min(self.freq_list))
        dd = expected_returns.drawdown_from_prices(self.propose_portfolio)
569

李宗熹's avatar
李宗熹 committed
570
        # if self.client_type == 1:
571 572 573 574 575 576 577 578
        # proposal_risk = [[x, get_risk_level(search_rank(fund_rank, x, metric='substrategy'))] for x in
        #                  propose_portfolio.columns]
        # self.proposal_fund = list(filter(lambda x: x[1] != 'H', proposal_risk))

        # drop_fund_list = list(filter(lambda x: x[1] = 'H', proposal_risk))
        # proposal_portfolio = list((set(self.portfolio) - set(self.no_data_fund) - set(self.replace_pair.keys())) | \
        #                           (set(self.proposal_fund) | set(self.replace_pair.values())))
        # propose_portfolio.drop()
李宗熹's avatar
李宗熹 committed
579

李宗熹's avatar
李宗熹 committed
580
        propose_risk_mapper = dict()
李宗熹's avatar
李宗熹 committed
581
        for fund in self.propose_portfolio.columns:
李宗熹's avatar
李宗熹 committed
582 583
            propose_risk_mapper[fund] = str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))

李宗熹's avatar
李宗熹 committed
584
        if self.client_type == 1:
李宗熹's avatar
李宗熹 committed
585 586
            risk_upper = {"L": 0.6, "M": 0.4, "H": 0.0}
            risk_lower = {"L": 0.6, "M": 0.4, "H": 0.0}
李宗熹's avatar
李宗熹 committed
587
        elif self.client_type == 2:
李宗熹's avatar
李宗熹 committed
588 589
            risk_upper = {"L": 0.5, "M": 0.3, "H": 0.2}
            risk_lower = {"L": 0.5, "M": 0.3, "H": 0.2}
李宗熹's avatar
李宗熹 committed
590
        elif self.client_type == 3:
李宗熹's avatar
李宗熹 committed
591 592
            risk_upper = {"L": 0.3, "M": 0.5, "H": 0.2}
            risk_lower = {"L": 0.3, "M": 0.5, "H": 0.2}
李宗熹's avatar
李宗熹 committed
593
        elif self.client_type == 4:
李宗熹's avatar
李宗熹 committed
594 595
            risk_upper = {"L": 0.3, "M": 0.4, "H": 0.3}
            risk_lower = {"L": 0.3, "M": 0.4, "H": 0.3}
李宗熹's avatar
李宗熹 committed
596
        elif self.client_type == 5:
李宗熹's avatar
李宗熹 committed
597 598
            risk_upper = {"L": 0.0, "M": 0.5, "H": 0.5}
            risk_lower = {"L": 0.0, "M": 0.5, "H": 0.5}
李宗熹's avatar
李宗熹 committed
599 600 601 602 603 604
        else:
            risk_upper = {"H": 1.0}
            risk_lower = {"L": 0.0}
            raise ValueError

        w_low = 1000000 / self.invest_amount
李宗熹's avatar
李宗熹 committed
605 606 607 608 609 610 611 612 613 614 615 616
        try:
            ef = EfficientFrontier(mu, S, weight_bounds=[w_low, 1], expected_drawdown=dd)
            # ef = EfficientFrontier(mu, S, weight_bounds=[0, 1], expected_drawdown=dd)
            ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
            ef.efficient_return(target_return=self.expect_return, target_drawdown=self.expect_drawdown)
            clean_weights = ef.clean_weights()
            ef.portfolio_performance(verbose=True)
            self.new_weights = np.array(list(clean_weights.values()))
        except:
            self.new_weights = np.asarray([1/len(self.propose_portfolio.columns)] * len(self.propose_portfolio.columns))

        print(self.new_weights)
李宗熹's avatar
李宗熹 committed
617 618
        end4 = time.time()
        print("模型计算一次时间:", end4 - end3)
李宗熹's avatar
李宗熹 committed
619 620 621 622
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)
李宗熹's avatar
李宗熹 committed
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

        # elif self.client_type == 2:
        # elif self.client_type == 3:
        # elif self.client_type == 4:
        # elif self.client_type == 5:
        # print(len(propose_portfolio.columns))
        # # 单支基金占投资额的下界为 100W/投资总额
        # # w_low = 1e6 / self.invest_amount
        # w_low = 0
        # w_origin, S, mu = optim_drawdown(propose_portfolio, 0.5, [w_low, 1], min(self.freq_list))
        # print(w_origin)
        # S = np.asmatrix(S)
        # w_origin = np.asarray([i for i in w_origin.values()])
        # risk_target = np.asarray([1 / len(w_origin)] * len(w_origin))
        # self.proposal_weights = calcu_w(w_origin, S, risk_target)

    def return_compare(self):
李宗熹's avatar
李宗熹 committed
640
        index_data = get_index_daily(self.index_id, self.start_date)
李宗熹's avatar
李宗熹 committed
641
        index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
642 643
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1
        # origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
644
        propose_fund_return = self.propose_portfolio.iloc[:, :] / self.propose_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
645 646 647
        propose_fund_return['return'] = propose_fund_return.T.iloc[:, :].apply(lambda x: np.dot(self.new_weights, x))
        return index_return, propose_fund_return

赵杰's avatar
赵杰 committed
648 649 650
    def old_evaluation(self, group_name, group_result, data_adaptor):
        start_year = data_adaptor.start_date.year
        start_month = data_adaptor.start_date.month
赵杰's avatar
赵杰 committed
651 652 653
        current_year = data_adaptor.end_date.year
        current_month = data_adaptor.end_date.month
        current_day = data_adaptor.end_date.day
李宗熹's avatar
李宗熹 committed
654 655
        past_month = (current_year - start_year) * 12 + current_month - start_month

赵杰's avatar
赵杰 committed
656
        # 投入成本(万元)
李宗熹's avatar
李宗熹 committed
657
        input_cost = round(group_result[group_name]["total_cost"] / 10000, 2)
赵杰's avatar
赵杰 committed
658
        # 整体盈利(万元)
李宗熹's avatar
李宗熹 committed
659
        total_profit = round(group_result[group_name]["cumulative_profit"] / 10000, 2)
赵杰's avatar
赵杰 committed
660 661 662 663 664 665
        # 整体表现 回撤能力
        fund_rank_data = fund_rank[fund_rank["fund_id"].isin(self.portfolio)]
        z_score = fund_rank_data["z_score"].mean()
        drawdown_rank = fund_rank_data["max_drawdown_rank"].mean()
        return_rank_df = fund_rank_data["annual_return_rank"]
        z_score_level = np.select([z_score >= 80,
李宗熹's avatar
李宗熹 committed
666 667
                                   70 <= z_score < 80,
                                   z_score < 70], [0, 1, 2]).item()
赵杰's avatar
赵杰 committed
668 669 670 671 672 673 674 675 676 677 678
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        # 收益稳健
        fund_rank_re = fund_rank_data[fund_rank_data["annual_return_rank"] > 0.8]
        return_rank_evaluate = ""
        if len(fund_rank_re) > 0:
            num = len(fund_rank_re)
            fund_id_rank_list = list(fund_rank_re["fund_id"])
            for f_id in fund_id_rank_list:
李宗熹's avatar
李宗熹 committed
679 680
                name = data_adaptor.user_customer_order_df[data_adaptor.user_customer_order_df["fund_id"] == f_id][
                    "fund_name"].values[0]
赵杰's avatar
赵杰 committed
681
                return_rank_evaluate = return_rank_evaluate + name + "、"
李宗熹's avatar
李宗熹 committed
682
            return_rank_evaluate = return_rank_evaluate[:-1] + "等" + str(num) + "只产品稳健,对组合的收益率贡献明显,"
赵杰's avatar
赵杰 committed
683 684 685

        # 正收益基金数量
        group_hold_data = pd.DataFrame(group_result[group_name]["group_hoding_info"])
李宗熹's avatar
李宗熹 committed
686
        profit_positive_num = group_hold_data[group_hold_data["profit"] > 0]["profit"].count()
赵杰's avatar
赵杰 committed
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
        if profit_positive_num > 0:
            profit_positive_evaluate = str(profit_positive_num) + "只基金取的正收益,"
        else:
            profit_positive_evaluate = ""

        # 综合得分较低数量
        abandon_num = len(self.abandon_fund_score)
        abandon_evaluate = str(abandon_num) + "只基金综合得分较低建议更换,"

        # 成立时间短
        if len(self.no_data_fund) > 0:
            no_data_fund_evaluate = str(len(self.no_data_fund)) + "只基金因为成立时间较短,暂不做评价;"
        else:
            no_data_fund_evaluate = ";"

李宗熹's avatar
李宗熹 committed
702 703
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
赵杰's avatar
赵杰 committed
704 705 706 707 708 709
        strategy_list = group_order_df["substrategy"]
        uniqe_strategy = list(strategy_list.unique())
        uniqe_strategy_name = [dict_substrategy[int(x)] + "、" for x in uniqe_strategy]
        # 覆盖的基金名称
        strategy_name_evaluate = "".join(uniqe_strategy_name)[:-1]

pengxiong's avatar
pengxiong committed
710 711 712 713 714 715
        try:
            if len(uniqe_strategy) / float(len(strategy_list)) > 0.6:
                strategy_distribution_evaluate = "策略上有一定分散"
            else:
                strategy_distribution_evaluate = "策略分散程度不高"
        except ZeroDivisionError:
赵杰's avatar
赵杰 committed
716 717 718
            strategy_distribution_evaluate = "策略分散程度不高"
        # 相关性
        if len(self.abandon_fund_corr) > 0:
李宗熹's avatar
李宗熹 committed
719 720
            fund_corr_name = [str(group_order_df[group_order_df["fund_id"] == f_id]["fund_name"].values[0]) + "和" for
                              f_id in self.abandon_fund_corr]
赵杰's avatar
赵杰 committed
721 722 723 724
            fund_corr_evaluate = "".join(fund_corr_name)[:-1] + "相关性较高,建议调整组合配比;"
        else:
            fund_corr_evaluate = ";"

李宗熹's avatar
李宗熹 committed
725
        num_fund = len(self.portfolio)
赵杰's avatar
赵杰 committed
726
        evaluate_enum = [["优秀", "良好", "一般"],
李宗熹's avatar
李宗熹 committed
727
                         ["优秀", "良好", "合格", "较差"]]
李宗熹's avatar
李宗熹 committed
728

赵杰's avatar
赵杰 committed
729 730
        z_score_evaluate = evaluate_enum[0][z_score_level]
        drawdown_evaluate = evaluate_enum[1][drawdown_level]
赵杰's avatar
赵杰 committed
731 732 733 734 735 736 737 738 739
        if z_score_evaluate in ["优秀", "良好"]:
            z_score_evaluate = """<span class="self_description_red">{}</span>""".format(z_score_evaluate)
        else:
            z_score_evaluate = """<span class="self_description_green">{}</span>""".format(z_score_evaluate)

        if drawdown_evaluate in ["优秀", "良好"]:
            drawdown_evaluate = """<span class="self_description_red">{}</span>""".format(drawdown_evaluate)
        else:
            drawdown_evaluate = """<span class="self_description_green">{}</span>""".format(drawdown_evaluate)
赵杰's avatar
赵杰 committed
740 741 742 743 744 745 746 747 748 749 750 751

        sentence = {
            1: "1、组合构建于{}年{}月,至今已运行{}个月。投入成本为{}万元,截止{}年{}月{}日,整体盈利{}万元,整体表现{},回撤控制能力{};\n",
            2: "2、组合共持有{}只基金,{}{}{}{}\n",
            3: "3、策略角度来看,组合涵盖了{}, {}{}\n"
        }

        data = {1: [start_year, start_month, past_month, input_cost, current_year, current_month, current_day,
                    total_profit, z_score_evaluate, drawdown_evaluate],
                2: [num_fund, return_rank_evaluate, profit_positive_evaluate, abandon_evaluate, no_data_fund_evaluate],
                3: [strategy_name_evaluate, strategy_distribution_evaluate, fund_corr_evaluate]
                }
赵杰's avatar
赵杰 committed
752
        ret = []
赵杰's avatar
赵杰 committed
753
        for k, v in data.items():
赵杰's avatar
赵杰 committed
754
            ret.append(sentence[k].format(*data[k]).replace(",;", ";"))
赵杰's avatar
赵杰 committed
755 756 757 758

        # 旧组合累积收益df
        group_result_data = group_result[group_name]
        hold_info = group_result_data["group_hoding_info"]
赵杰's avatar
赵杰 committed
759
        hold_info_df = pd.DataFrame(hold_info)
赵杰's avatar
赵杰 committed
760 761 762
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
        group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())
赵杰's avatar
赵杰 committed
763 764 765 766

        freq_max = group_order_df["freq"].max()
        n_freq = freq_days(int(freq_max))

赵杰's avatar
赵杰 committed
767 768 769
        old_return_df = group_result_data["return_df"]
        old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"] - 1

赵杰's avatar
赵杰 committed
770 771 772 773 774 775 776 777
        # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
        total_asset = round(hold_info_df["market_values"].sum(), 2)
        old_return = group_result_data["cumulative_return"]
        old_return_ratio_year = group_result_data["return_ratio_year"]
        old_volatility = group_result_data["volatility"]
        old_max_drawdown = group_result_data["max_drawdown"]
        old_sharpe = group_result_data["sharpe"]

赵杰's avatar
赵杰 committed
778 779 780 781 782 783 784 785 786
        # 指数收益
        index_data = get_index_daily(self.index_id, self.start_date)
        index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1

        # 指数收益
        index_return = index_return[index_return.index >= group_order_start_date]
        start_index_return = index_return[" close"].values[0]
        index_return["new_index_return"] = (index_return[" close"] - start_index_return) / (1 + start_index_return)
赵杰's avatar
赵杰 committed
787 788 789 790 791 792 793 794
        index_return_ratio = index_return["new_index_return"].values[-1]
        index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1],
                                                index_return["new_index_return"], n_freq)
        index_volatility = volatility(index_return["new_index_return"] + 1, n_freq)
        index_drawdown = max_drawdown(index_return["new_index_return"] + 1)
        index_sim = simple_return(index_return["new_index_return"]+1)
        index_exc = excess_return(index_sim, BANK_RATE, n_freq)
        index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
赵杰's avatar
赵杰 committed
795 796 797 798 799 800 801 802 803 804

        # 收益对比数据
        return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]],
                                     right_index=True,
                                     left_index=True)
        return_compare_df["date"] = return_compare_df.index
        return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
        return_compare_df.iloc[1:-1, :]["date"] = ""
        old_return_compare_result = {

赵杰's avatar
赵杰 committed
805 806
            "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
            "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
赵杰's avatar
赵杰 committed
807 808
            "xlabels": return_compare_df["date"].values
        }
赵杰's avatar
赵杰 committed
809 810 811 812 813 814 815 816 817 818 819
        # 指标对比
        old_indicator = {"group_name": "现有持仓组合", "return_ratio": round((old_return - 1) * 100, 2),
                         "return_ratio_year": round(old_return_ratio_year * 100, 2),
                         "volatility": round(old_volatility * 100, 2),
                         "max_drawdown": round(old_max_drawdown[0] * 100, 2), "sharpe": round(old_sharpe, 2)}

        index_indicator = {"group_name": "中证500", "return_ratio": round(index_return_ratio * 100, 2),
                           "return_ratio_year": round(index_return_ratio_year * 100, 2),
                           "volatility": round(index_volatility * 100, 2),
                           "max_drawdown": round(index_drawdown[0] * 100, 2), "sharpe": round(index_sharpe, 2)}
        old_indicator_compare = [old_indicator, index_indicator]
赵杰's avatar
赵杰 committed
820

赵杰's avatar
赵杰 committed
821
        return ret, old_return_compare_result, old_indicator_compare
李宗熹's avatar
李宗熹 committed
822

823
    def new_evaluation(self, group_name, group_result, data_adaptor):
李宗熹's avatar
李宗熹 committed
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        try:
            group_result_data = group_result[group_name]
            hold_info = group_result_data["group_hoding_info"]
            hold_info_df = pd.DataFrame(hold_info)
            group_order_df = data_adaptor.user_customer_order_df[
                data_adaptor.user_customer_order_df["folio_name"] == group_name]
            group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())

            # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
            total_asset = round(hold_info_df["market_values"].sum(), 2)
            old_return = group_result_data["cumulative_return"]
            old_return_ratio_year = group_result_data["return_ratio_year"]
            old_volatility = group_result_data["volatility"]
            old_max_drawdown = group_result_data["max_drawdown"]
            old_sharpe = group_result_data["sharpe"]

            # 建议基金数据
            index_return, propose_fund_return = self.return_compare()
            propose_fund_id_list = list(propose_fund_return.columns)
            propose_fund_id_list.remove("return")
            with TAMP_SQL(tamp_product_engine) as tamp_product:
                tamp_product_session = tamp_product.session
                sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
                cur = tamp_product_session.execute(sql_product)
                data = cur.fetchall()
                product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
            propose_fund_df = product_df[product_df["fund_id"].isin(propose_fund_id_list)]

            # 基金名称,策略分级
            propose_fund_id_name_list = [propose_fund_df[propose_fund_df["fund_id"] == fund_id]["fund_name"].values[0] for
                                         fund_id in propose_fund_id_list]
            propose_fund_id_strategy_name_list = [dict_substrategy[int(propose_fund_df[propose_fund_df["fund_id"] == fund_id]["substrategy"].values[0])] for
                                         fund_id in propose_fund_id_list]
            propose_fund_asset = [round(self.new_weights[i] * total_asset, 2) for i in range(len(propose_fund_id_name_list))]

            propose_info = {propose_fund_id_strategy_name_list[i]:
                                {"fund_name": propose_fund_id_name_list[i],
                                 "substrategy": propose_fund_id_strategy_name_list[i],
                                 "asset": propose_fund_asset[i]}
                            for i in range(len(propose_fund_id_list))}
            # 调仓建议
            suggestions_result = {}
            old_hold_fund_name_list = list(hold_info_df["fund_name"])
            for hold in hold_info:
赵杰's avatar
赵杰 committed
868
                suggestions = {}
李宗熹's avatar
李宗熹 committed
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
                if hold["fund_strategy_name"] not in suggestions_result.keys():
                    suggestions_result[hold["fund_strategy_name"]] = {}
                suggestions["fund_strategy_name"] = hold["fund_strategy_name"]
                suggestions["fund_name"] = hold["fund_name"]
                suggestions["before_optimization"] = hold["market_values"]
                suggestions["after_optimization"] = 0
                if suggestions["fund_strategy_name"] in propose_fund_id_strategy_name_list:
                    suggestions["after_optimization"] = 0
                suggestions_result[hold["fund_strategy_name"]][suggestions["fund_name"]] = suggestions

            for key, value in propose_info.items():
                if value["fund_name"] not in old_hold_fund_name_list:
                    suggestions = {}
                    if key not in suggestions_result.keys():
                        suggestions_result[key] = {}
                    suggestions["fund_strategy_name"] = value["substrategy"]
                    suggestions["fund_name"] = value["fund_name"]
                    suggestions["before_optimization"] = 0
                    suggestions["after_optimization"] = value["asset"]
                    suggestions_result[key][suggestions["fund_name"]] = suggestions
            for key, value in suggestions_result.items():
                suggestions_result[key] = list(value.values())
            suggestions_result_asset = {"before": total_asset, "after": total_asset}

            # 旧组合累积收益df
            old_return_df = group_result_data["return_df"]
            old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"] - 1
            # 新组合累积收益df
            propose_fund_return_limit_data = propose_fund_return[propose_fund_return.index >= group_order_start_date]
            start_return = propose_fund_return_limit_data['return'].values[0]
            propose_fund_return_limit_data["new_return"] = (propose_fund_return_limit_data["return"] - start_return)/(1+start_return)

            # 新组合累积收益
            new_return_ratio = propose_fund_return_limit_data["new_return"].values[-1]
            # 新组合区间年化收益率
            freq_max = group_order_df["freq"].max()
            n_freq = freq_days(int(freq_max))
            new_return_ratio_year = annual_return(propose_fund_return_limit_data["new_return"].values[-1], propose_fund_return_limit_data, n_freq)

            # 新组合波动率
            new_volatility = volatility(propose_fund_return_limit_data["new_return"]+1, n_freq)

            # 新组合最大回撤
            new_drawdown = max_drawdown(propose_fund_return_limit_data["new_return"]+1)

            # 新组合夏普比率
            sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
            exc = excess_return(sim, BANK_RATE, n_freq)
            new_sharpe = sharpe_ratio(exc, sim, n_freq)

            # 指数收益
            index_return = index_return[index_return.index >= group_order_start_date]
            start_index_return = index_return[" close"].values[0]
            index_return["new_index_return"] = (index_return[" close"] - start_index_return) / (1 + start_index_return)
            index_return_ratio = index_return["new_index_return"].values[-1]
            index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], n_freq)
            index_volatility = volatility(index_return["new_index_return"]+1, n_freq)
            index_drawdown = max_drawdown(index_return["new_index_return"]+1)
赵杰's avatar
赵杰 committed
927
            index_sim = simple_return(index_return["new_index_return"]+1)
李宗熹's avatar
李宗熹 committed
928 929 930 931 932 933 934 935 936 937 938 939
            index_exc = excess_return(index_sim, BANK_RATE, n_freq)
            index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)

            # 收益对比数据
            return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]], right_index=True,
                     left_index=True)
            return_compare_df = pd.merge(return_compare_df, propose_fund_return_limit_data["new_return"], right_index=True,
                     left_index=True)
            return_compare_df["date"] = return_compare_df.index
            return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
            return_compare_df.iloc[1:-1,:]["date"] = ""
            return_compare_result = {
赵杰's avatar
赵杰 committed
940 941 942
                "new_combination": {"name": "新组合", "data": return_compare_df["new_return"].values*100},
                "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
                "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
李宗熹's avatar
李宗熹 committed
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                "xlabels": return_compare_df["date"].values
            }

            # 指标对比
            old_indicator = {"group_name": "现有持仓组合", "return_ratio": round((old_return-1)*100, 2), "return_ratio_year": round(old_return_ratio_year*100,2),
                             "volatility": round(old_volatility*100, 2), "max_drawdown": round(old_max_drawdown[0]*100, 2), "sharpe": round(old_sharpe, 2)}
            new_indicator = {"group_name": "建议优化组合", "return_ratio": round(new_return_ratio*100, 2), "return_ratio_year": round(new_return_ratio_year*100, 2),
                             "volatility": round(new_volatility*100, 2), "max_drawdown": round(new_drawdown[0]*100, 2), "sharpe": round(new_sharpe, 2)}
            index_indicator = {"group_name": "中证500", "return_ratio": round(index_return_ratio*100, 2), "return_ratio_year": round(index_return_ratio_year*100, 2),
                             "volatility": round(index_volatility*100, 2), "max_drawdown": round(index_drawdown[0]*100, 2), "sharpe": round(index_sharpe, 2)}
            indicator_compare = [new_indicator, old_indicator, index_indicator]


            # 在保留{}的基础上,建议赎回{},并增配{}后,整体组合波动率大幅降低,最大回撤从{}降到不足{},年化收益率提升{}个点
            hold_fund = set(self.portfolio) - set(self.abandon_fund_score + self.abandon_fund_corr + self.no_data_fund)
            hold_fund_name = [get_fund_name(x).values[0][0] for x in hold_fund]
            abandon_fund = (self.abandon_fund_score + self.abandon_fund_corr)
            abandon_fund_name = [get_fund_name(x).values[0][0] for x in abandon_fund]
            proposal_fund = self.proposal_fund
            proposal_fund_name = [get_fund_name(x).values[0][0] for x in proposal_fund]

            sentence = []
            if hold_fund is not None:
                sentence.append("在保留" + "".join([i + "," for i in hold_fund_name]).rstrip(",") + "的基础上")
            if abandon_fund is not None:
                sentence.append("建议赎回" + "".join([i + "," for i in abandon_fund_name]).rstrip(","))
            if proposal_fund is not None:
                sentence.append("增配" + "".join([i + "," for i in proposal_fund_name]).rstrip(",") + "后")
            if new_volatility < old_volatility * 0.9:
                sentence.append("整体组合波动率大幅降低")
            if new_drawdown < old_max_drawdown:
                sentence.append("最大回撤从{:.2%}降到不足{:.2%}".format(old_max_drawdown[0], new_drawdown[0]))
            if new_return_ratio_year > old_return_ratio_year:
                sentence.append("年化收益率提升{:.2f}个点".format((new_return_ratio_year - old_return_ratio_year) * 100))

            whole_sentence = ",".join(sentence).lstrip(",") + "。"
            return suggestions_result, suggestions_result_asset, return_compare_result, indicator_compare, whole_sentence
        except Exception as e:
            repr(e)
李宗熹's avatar
李宗熹 committed
982
            return None, None, None, None, None
李宗熹's avatar
李宗熹 committed
983

李宗熹's avatar
李宗熹 committed
984
    def single_evaluation(self, fund_id, objective=False):
李宗熹's avatar
李宗熹 committed
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        """
           1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
           2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
           3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
           4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
           5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%

           旧个基显示1-4,新个基显示1-5。

           旧个基如果是要保留的,显示好的评价。
                如果是要剔除的,显示坏的评价。

           新个基只显示好的评价。
        Args:
            fund_id:

        Returns:
        """
        z_score = search_rank(fund_rank, fund_id, metric='z_score')
        total_level = np.select([z_score >= 80,
                                 70 <= z_score < 80,
                                 z_score < 70], [0, 1, 2]).item()

李宗熹's avatar
李宗熹 committed
1008 1009 1010 1011 1012 1013 1014 1015
        index_return_monthly = get_index_monthly(self.index_id, self.start_date)
        fund_nav = get_tamp_nav(fund_id, self.start_date, invest_type=self.invest_type)
        fund_nav_monthly = fund_nav.groupby([fund_nav.index.year, fund_nav.index.month]).tail(1)
        fund_nav_monthly = rename_col(fund_nav_monthly, fund_id)
        fund_return_monthly = simple_return(fund_nav_monthly[fund_id].astype(float))
        index_return_monthly.index = index_return_monthly.index.strftime('%Y-%m')
        fund_return_monthly.index = fund_return_monthly.index.strftime('%Y-%m')
        compare = pd.merge(index_return_monthly, fund_return_monthly, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
1016
        fund_win_rate = ((compare[fund_id] - compare['pct_chg']) > 0).sum() / compare[fund_id].count()
李宗熹's avatar
李宗熹 committed
1017

李宗熹's avatar
李宗熹 committed
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        return_rank = search_rank(fund_rank, fund_id, metric='annual_return_rank')
        return_level = np.select([return_rank >= 0.8,
                                  0.7 <= return_rank < 0.8,
                                  0.6 <= return_rank < 0.7,
                                  return_rank < 0.6], [0, 1, 2, 3]).item()
        return_bool = 1 if return_level > 2 else 0
        return_triple = return_level - 1 if return_level >= 2 else return_level

        drawdown_rank = search_rank(fund_rank, fund_id, metric='max_drawdown_rank')
        drawdown_value = search_rank(fund_rank, fund_id, metric='max_drawdown')
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        drawdown_bool = 1 if drawdown_level > 2 else 0
        drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

        sharp_rank = search_rank(fund_rank, fund_id, metric='sharp_ratio_rank')
        sharp_level = np.select([sharp_rank >= 0.8,
                                 0.6 <= sharp_rank < 0.8,
                                 sharp_rank < 0.6], [0, 1, 2]).item()

        data = {1: [total_level, return_level, drawdown_level, sharp_level],
李宗熹's avatar
李宗熹 committed
1041
                2: [return_triple, format(fund_win_rate, '.2%'), return_bool],
李宗熹's avatar
李宗熹 committed
1042
                3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
李宗熹's avatar
李宗熹 committed
1043 1044
                4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

李宗熹's avatar
李宗熹 committed
1045
        if fund_id in self.abandon_fund_score:
李宗熹's avatar
李宗熹 committed
1046 1047 1048 1049 1050 1051 1052 1053
            data['remove'] = True
        elif fund_id in self.proposal_fund:
            data[5] = [1] * 7
            data['remove'] = False
        else:
            data['remove'] = False

        x = '30%'
李宗熹's avatar
李宗熹 committed
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        content = {
            # 第一个评价
            1: [["优秀", "良好", "一般"],
                ["优秀", "良好", "合格", "较差"],
                ["优秀", "良好", "合格", "较差"],
                ["高", "一般", "较低"]],
            # 第二个评价
            2: [["高于", "持平", "低于"],
                x,
                ["优秀", "一般"]],
            # 第三个评价
            3: [["优秀", "良好", "一般"],
                ["高", "中", "低"], x,
                ["高于", "持平", "低于"]],
            # 第四个评价
            4: [["较好", "较差"],
                ["较小", "较大"],
                ["较小", "较小"],
                ["较大", "较小"],
                ["较低", "较高"]],
            5: [["TO DO"]] * 7}
李宗熹's avatar
李宗熹 committed
1075 1076

        sentence = {
李宗熹's avatar
李宗熹 committed
1077
            1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
李宗熹's avatar
李宗熹 committed
1078
            2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
李宗熹's avatar
李宗熹 committed
1079 1080 1081
            3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
            4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n",
            5: "基金经理,投资年限%s年,经验丰富;投资能力较强,生涯中共管理过%s只基金,历任的%s只基金平均业绩在同类中处于上游水平,其中%s只排名在前%s;生涯年化回报率%s,同期大盘只有%s;"}
李宗熹's avatar
李宗熹 committed
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

        remove = data["remove"]
        del data["remove"]

        # 不剔除,选择好的话术
        if not remove:
            evaluation = choose_good_evaluation(data)
        # 剔除,选择坏的话术
        else:
            evaluation = choose_bad_evaluation(data)

李宗熹's avatar
李宗熹 committed
1093
        ret = []
李宗熹's avatar
李宗熹 committed
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        fund_name = get_fund_name(fund_id).values[0][0]
        try:
            default_evaluation = pd.read_csv("evaluation.csv", encoding='utf-8', names=['fund_id', 'eval'])
            if default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0]:
                ret.append('1、' + default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0])

                evaluation_dict = {'name': fund_name, 'data': ret}

                if objective:
                    if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
                        evaluation_dict['status'] = "换仓"
                    elif fund_id in self.portfolio:
                        evaluation_dict['status'] = "保留"
                else:
                    evaluation_dict['status'] = ""
                return evaluation_dict
        except Exception:
            pass

李宗熹's avatar
李宗熹 committed
1113
        i = 1
李宗熹's avatar
李宗熹 committed
1114
        for k, v in evaluation.items():
李宗熹's avatar
李宗熹 committed
1115
            single_sentence = str(i) + "、" + sentence[k] % translate_single(content, k, v)
李宗熹's avatar
李宗熹 committed
1116 1117
            ret.append(single_sentence)
            i += 1
李宗熹's avatar
李宗熹 committed
1118

李宗熹's avatar
李宗熹 committed
1119 1120
        evaluation_dict = {'name': fund_name, 'data': ret}

李宗熹's avatar
李宗熹 committed
1121
        if objective:
李宗熹's avatar
李宗熹 committed
1122 1123 1124 1125
            if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
                evaluation_dict['status'] = "换仓"
            elif fund_id in self.portfolio:
                evaluation_dict['status'] = "保留"
李宗熹's avatar
李宗熹 committed
1126 1127
        else:
            evaluation_dict['status'] = ""
李宗熹's avatar
李宗熹 committed
1128
        return evaluation_dict
李宗熹's avatar
李宗熹 committed
1129

李宗熹's avatar
李宗熹 committed
1130
    def old_portfolio_evaluation(self, objective=False):
李宗熹's avatar
李宗熹 committed
1131 1132 1133 1134
        try:
            result = []
            for fund in self.portfolio:
                try:
李宗熹's avatar
李宗熹 committed
1135
                    result.append(self.single_evaluation(fund, objective))
李宗熹's avatar
李宗熹 committed
1136 1137 1138 1139 1140 1141 1142
                except IndexError:
                    continue
            return result
        except Exception as e:
            repr(e)
            return None

李宗熹's avatar
李宗熹 committed
1143
    def propose_fund_evaluation(self, ):
李宗熹's avatar
李宗熹 committed
1144 1145 1146 1147 1148 1149 1150 1151
        try:
            result = []
            for fund in self.proposal_fund:
                result.append(self.single_evaluation(fund))
            return result
        except Exception as e:
            repr(e)
            return None
李宗熹's avatar
李宗熹 committed
1152

李宗熹's avatar
李宗熹 committed
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    def single_fund_radar(self):
        radar_data = []
        for fund in self.portfolio:
            try:
                radar_data.append(get_radar_data(fund))
            except IndexError:
                continue
        return radar_data

    def propose_fund_radar(self):
        radar_data = []
        for fund in self.proposal_fund:
            radar_data.append(get_radar_data(fund))
        return radar_data

李宗熹's avatar
李宗熹 committed
1168

李宗熹's avatar
李宗熹 committed
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
# portfolio = ['HF00002JJ2', 'HF00005DBQ', 'HF0000681Q', 'HF00006693', 'HF00006AZF', 'HF00006BGS']
# portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
# portfolio_diagnose.optimize()
# if __name__ == '__main__':
    # print(portfolio_diagnose.single_fund_radar())
    # print(portfolio_diagnose.propose_fund_radar())
    # print(portfolio_diagnose.old_portfolio_evaluation())
    # print('旧组合相关性:', portfolio_diagnose.old_correlation)
    # print('新组合相关性:', portfolio_diagnose.new_correlation)
    # print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
    # print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())
    # print(portfolio_diagnose.single_evaluation(fund_id='HF0000681Q'))