fund_rank.py 8.84 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
import pymysql
import tushare as ts
import logging
logging.basicConfig(level=logging.DEBUG)

from week_evaluation import *


con = pymysql.connect(host='tamper.mysql.polardb.rds.aliyuncs.com',
                      user='tamp_fund',
                      password='@imeng408',
                      database='tamp_fund',
                      charset='utf8',
                      use_unicode='True')


def get_dataframe(fund, start_date, rollback=False):
    sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
          "WHERE ts_code='{0}'".format(fund)
    df = pd.read_sql(sql, con).dropna(how='any')
    if df['adj_nav'].count() == 0:
        logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
        return None

    df['end_date'] = pd.to_datetime(df['end_date'])

    if rollback:
        while start_date not in list(df['end_date']):
            start_date = start_date - datetime.timedelta(days=1)

    df = df[df['end_date'] >= start_date]
    df.drop_duplicates(subset='end_date', inplace=True, keep='first')
    df.set_index('end_date', inplace=True)
    df.sort_index(inplace=True, ascending=True)
    return df


def get_frequency(df):
    index_series = df.index.to_series()
    freq_series = index_series - index_series.shift(1)
    logging.log(logging.INFO, freq_series.describe())
    f = freq_series.mode()[0].days
    if f in range(0, 3):
        return 250
    elif f in range(6, 9):
        return 52
    elif f in range(13, 18):
        return 24
    elif f in range(28, 33):
        return 12
    elif f in range(110, 133):
        return 3
    else:
        raise ValueError


def get_trade_cal(start_date, end_date, method):
    if method == 'mysql':
        sql = 'SELECT cal_date FROM stock_trade_cal WHERE is_open=1'
        df = pd.read_sql(sql, con)
        df['end_date'] = pd.to_datetime(df['cal_date'])
        df.set_index('end_date', drop=False, inplace=True)

    elif method == 'tushare':
        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
    return df


def get_manager():
    sql = 'SELECT ts_code, name FROM public_fund_manager WHERE end_date IS NULL'
    df = pd.read_sql(sql, con)
    return df


def get_fund_info(end_date):
    sql = "SELECT ts_code, fund_type, management FROM public_fund_basic " \
          "WHERE delist_date IS NULL AND (due_date IS NULL OR due_date>'{}')".format(end_date.strftime('%Y%m%d'))
    df = pd.read_sql(sql, con).dropna(how='all')
    manager_info = get_manager()
    df = pd.merge(df, manager_info, how="left", on='ts_code')
    return df


def resample(df, trading_cal, freq):
    """对基金净值表进行粒度不同的重采样,并剔除不在交易日中的结果

    Args:
        df ([DataFrame]): [原始基金净值表]
        trading_cal ([DataFrame]): [上交所交易日表]
        freq ([int]): [重采样频率: 1:工作日,2:周, 3:月, 4:半月, 5:季度]

    Returns:
        [DataFrame]: [重采样后剔除不在交易日历中的净值表和交易日历以净值日期为索引的合表]
    """
    freq_dict = {250: 'B', 52: 'W-FRI', 12: 'M', 24: 'SM', 3: 'Q'}
    resample_freq = freq_dict[freq]
    # 按采样频率进行重采样并进行净值的前向填充
    df = df.resample(rule=resample_freq).ffill()

    # 根据采样频率确定最大日期偏移量(保证偏移后的日期与重采样的日期在同一周,同一月,同一季度等)
    timeoffset_dict = {250: 1, 52: 5, 12: 30, 24: 15, 3: 120}
    timeoffsetmax = timeoffset_dict[freq]

    # Dataframe不允许直接修改index,新建一份index的复制并转为list
    new_index = list(df.index)
    # 遍历重采样后的日期
    for idx, date in enumerate(df.index):
        # 如果重采样后的日期不在交易日历中
        if date not in trading_cal['end_date']:
            # 对重采样后的日期进行偏移
            for time_offset in range(1, timeoffsetmax):
                # 如果偏移后的日期在交易日历中,保留偏移后的日期
                if date - datetime.timedelta(days=time_offset) in trading_cal['end_date']:
                    new_index[idx] = date - datetime.timedelta(days=time_offset)
                    # 任意一天满足立即退出循环
                    break

    # 更改净值表的日期索引为重采样后且在交易日内的日期
    df.index = pd.Series(new_index)
    return pd.merge(df, trading_cal, how='inner', left_index=True, right_index=True)


def z_score(annual_return_rank, downside_risk_rank, max_drawdown_rank, sharp_ratio_rank):
    return 25 * annual_return_rank + 25 * downside_risk_rank + 25 * max_drawdown_rank + 25 * sharp_ratio_rank


def cal_date(date, period_type, period):
    year, month, day = map(int, date.strftime('%Y-%m-%d').split('-'))
    if period_type == 'Y':
        cal_year = year - period
        return datetime.datetime(cal_year, month, day)
    elif period_type == 'm':
        cal_month = month - period
        if cal_month > 0:
            return datetime.datetime(year, cal_month, day)
        else:
            return datetime.datetime(year - 1, cal_month + 12, day)
    elif period_type == 'd':
        return date - datetime.timedelta(days=period)


def metric_rank(df):
    for metric in ['annual_return', 'downside_risk', 'max_drawdown', 'sortino_ratio']:
        if metric in ['downside_risk', 'max_drawdown']:
            ascending = False
        else:
            ascending = True
        df['{}_rank'.format(metric)] = df.groupby(['invest_type'])[metric].rank(ascending=ascending, pct=True)
    return df


def public_fund_rank(start_date, end_date):
    fund_info = get_fund_info(end_date)
    group = fund_info.groupby('fund_type')
    grouped_fund = group['ts_code'].unique()

    trading_cal = get_trade_cal(start_date, end_date, method='mysql')

    metric_df = pd.DataFrame(columns=('ts_code', 'range_return', 'annual_return', 'max_drawdown', 'sharp_ratio',
                                      'volatility', 'sortino_ratio', 'downside_risk', 'invest_type'))

    skipped_funds = []
    for invest_type in grouped_fund.index:
        for fund in grouped_fund[invest_type]:

            df = get_dataframe(fund, start_date)

            try:
                if df.index[-1] - df.index[0] < 0.6 * (end_date - start_date):
                    skipped_funds.append(fund)
                n = get_frequency(df)
            except Exception as e:
                logging.log(logging.ERROR, repr(e))
                logging.log(logging.INFO, 'Skipped {}'.format(fund))
                continue

            df = resample(df, trading_cal, n)
            _ = get_frequency(df)

            logging.log(logging.INFO, "Dealing with {}".format(fund))
            net_worth = df['adj_nav'].astype(float)

            end_df, begin_df = net_worth.values[-1], net_worth.values[0]

            sim_return = simple_return(net_worth)
            ex_return = excess_return(sim_return, bank_rate=0.015, n=n)
            drawdown = float(max_drawdown(net_worth)[0])
            shp_ratio = sharpe_ratio(ex_return, sim_return, n)
            rng_return = float(range_return(end_df, begin_df))
            ann_return = annual_return(rng_return, net_worth, n)
            vol = volatility(sim_return, n)
            down_risk = downside_risk(sim_return, bank_rate=0.015, n=n)
            sor_ratio = sortino_ratio(ex_return, down_risk, n)

            manager = fund_info[fund_info['ts_code'] == fund]['name'].values
            management = fund_info[fund_info['ts_code'] == fund]['management'].values

            row = pd.Series([fund, rng_return, ann_return, drawdown, shp_ratio,
                             vol, sor_ratio, down_risk, invest_type, manager, management],
                            index=['ts_code', 'range_return', 'annual_return', 'max_drawdown',
                                   'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                   'invest_type', 'manager', 'management'])
            metric_df = metric_df.append(row, ignore_index=True)
    metric_df.set_index('ts_code', inplace=True)

    df = metric_rank(metric_df)
    df['z_score'] = z_score(df['annual_return_rank'],
                            df['downside_risk_rank'],
                            df['max_drawdown_rank'],
                            df['sharp_ratio_rank'])
    return df


if __name__ == '__main__':
    end_date = datetime.datetime.now() - datetime.timedelta(days=1)
    start_date = cal_date(end_date, 'Y', 1)
    public_fund_rank = public_fund_rank(start_date, end_date)
    public_fund_rank.to_csv('public_fund_rank.csv', encoding='gbk')