jinjia2html_v2.py 18 KB
Newer Older
pengxiong's avatar
pengxiong committed
1
import json
pengxiong's avatar
pengxiong committed
2
import sys
赵杰's avatar
赵杰 committed
3 4 5 6 7
import time
import uuid

from jinja2 import PackageLoader, Environment

pengxiong's avatar
pengxiong committed
8
from app.api.engine import work_dir, pdf_folder, template_folder, pdf_save_folder
pengxiong's avatar
pengxiong committed
9
from app.config.default_template_params import hold_default_template, diagnose_default_template
赵杰's avatar
赵杰 committed
10 11 12 13 14 15 16 17
from app.service.portfolio_diagnose import PortfolioDiagnose
from app.service.result_service_v2 import UserCustomerResultAdaptor
import numpy as np
from concurrent import futures
import os

# 准备数据
from app.utils.draw import draw_month_return_chart, draw_contribution_chart, draw_combination_chart, \
赵杰's avatar
赵杰 committed
18
    draw_old_combination_chart, draw_index_combination_chart
赵杰's avatar
赵杰 committed
19 20 21 22 23
from app.utils.html_to_pdf import html_to_pdf
from app.utils.radar_chart import gen_radar_chart


class DataIntegrate:
24
    def __init__(self, ifa_id='USER_INFO15917850824287', customer_id='6716613802534121472', pdf_name=str(uuid.uuid4()) + '.pdf', type=1):
赵杰's avatar
赵杰 committed
25 26
        self.user_customer = UserCustomerResultAdaptor(ifa_id, customer_id)
        self.customer_name = self.user_customer.customer_real_name
赵杰's avatar
赵杰 committed
27
        self.ifa_name = self.user_customer.ifa_real_name
pengxiong's avatar
pengxiong committed
28 29
        # self.pdf_name = self.ifa_name + "_" + self.customer_name + "_" + '.pdf'
        self.pdf_name = pdf_name
pengxiong's avatar
pengxiong committed
30 31
        # 1持仓报告2诊断报告
        self.type = type
赵杰's avatar
赵杰 committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
        # 全部数据
        self.df = self.user_customer.calculate_total_data()
        # 组合结果数据
        self.d = self.user_customer.calculate_group_result_data()

        self.all_folio_result = {}
        # 分组合拼接结果数据
        self.get_group_result()

        # 投资总览
        self.get_summarize()
        # 月度回报
        self.get_month_return()
        # 月度回报表格
        self.get_month_table_return()

    # 分组和计算个基点评以及新增基金等结果
    def get_group_result(self):
        for group_name, group_result in self.d.items():
            portfolio_diagnose = self.get_portfolio_diagnose(group_result["fund_id_list"], invest_amount=group_result["total_cost"])
赵杰's avatar
赵杰 committed
52 53 54 55 56 57 58
            cur_group_portfolio_result = {
                'new_correlation': [],
                'propose_fund_data_list': [],
                'suggestions_result': {},
                'suggestions_result_asset': {},
                'return_compare_pic': [],
                'indicator_compare': [],
59 60
                'new_group_evaluation': [],
                "correlation": group_result["correlation"]
赵杰's avatar
赵杰 committed
61
            }
赵杰's avatar
赵杰 committed
62 63 64 65 66 67 68 69 70 71 72 73 74

            # 旧持仓组合点评
            self.comments_on_position_portfolio(portfolio_diagnose, group_name, cur_group_portfolio_result)
            # 贡献分解
            self.contribution_deco(group_result, cur_group_portfolio_result)
            # 目标与业绩
            self.objectives_performance(group_result, cur_group_portfolio_result)
            # 个基点评
            self.single_fund_comment(portfolio_diagnose, cur_group_portfolio_result)
            # 旧收益比较
            self.get_old_compare_pic(cur_group_portfolio_result)
            # 旧相关性
            self.get_old_correlation(portfolio_diagnose, cur_group_portfolio_result)
pengxiong's avatar
pengxiong committed
75 76 77 78 79 80 81
            if self.type == 2:
                # 新增基金
                self.propose_fund(portfolio_diagnose, cur_group_portfolio_result)
                # 新收益比较
                self.get_transfer_suggestions(portfolio_diagnose, group_name, cur_group_portfolio_result)
                # 新相关性
                self.get_new_correlation(portfolio_diagnose, cur_group_portfolio_result)
赵杰's avatar
赵杰 committed
82 83 84 85

            self.all_folio_result[group_name] = cur_group_portfolio_result

    def get_portfolio_diagnose(self, portfolio, client_type=1, invest_amount=10000000):
86 87
        if invest_amount < 10000000:
            invest_amount = 10000000
88 89 90 91
        folio_fund_dict = {}
        for fd in portfolio:
            folio_fund_dict[fd] = self.user_customer.all_fund_type_dict[fd]
        portfolio_diagnose = PortfolioDiagnose(client_type=client_type, portfolio=folio_fund_dict,
92
                                               invest_amount=float(invest_amount),
赵杰's avatar
赵杰 committed
93
                                               start_date=self.user_customer.start_date)
94 95
        if self.type == 2:
            portfolio_diagnose.optimize()
赵杰's avatar
赵杰 committed
96 97 98 99 100
        return portfolio_diagnose

    # 全部数据综述结果
    def get_summarize(self):
        """投资总览."""
赵杰's avatar
赵杰 committed
101
        self.total_cost = int(self.df["total_cost"])  # 投资成本
赵杰's avatar
赵杰 committed
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        self.now_yield = round((self.df['cumulative_return']-1)*100, 2)     # 成立以来累计收益率
        self.now_annualised_return = round(self.df["return_ratio_year"] * 100, 2)  # 年化收益率
        self.index_yield = round((self.df["index_result"]["return_ratio"]-1)*100, 2)    # 指数收益率
        self.now_withdrawal = round(self.df["max_drawdown"][0]*100, 2)  # 最大回撤
        self.index_withdrawal = round(self.df["index_result"]["max_drawdown"][0]*100, 2)    # 指数最大回撤
        self.now_month_income = int(self.df["cur_month_profit"])  # 本月收益
        self.month_rise = round(self.df["cur_month_profit_ratio"] * 100, 2)  # 本月涨幅
        self.year_totoal_rate_of_return = round(self.df["cur_year_profit_ratio"] * 100, 2)  # 今年累计收益率
        self.now_year_income = int(self.df["cur_year_profit"])  # 今年累计收益
        self.final_balance = int(self.df["total_cost"] + self.df["cumulative_profit"])  # 期末资产
        self.total_profit = int(self.df["cumulative_profit"])  # 累计盈利

    def get_month_return(self):
        """月度回报."""
        """组合月度及累计回报率曲线图"""
        xlabels, product_list, cumulative = self.user_customer.get_month_return_chart()
        self.monthly_return_performance_pic = draw_month_return_chart(xlabels, product_list, cumulative)

    def get_month_table_return(self):
        """月度盈亏和期末资产"""
        self.monthly_table_return = self.df["month_return_data_dict"]

    # 旧组合持仓点评,贡献分解数据
    def comments_on_position_portfolio(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """旧持仓组合点评. 旧贡献分解数据"""
        cur_group_portfolio_result["old_evaluation"], cur_group_portfolio_result["old_return_compare_data"],\
        cur_group_portfolio_result["old_indicator_compare"] = portfolio_diagnose.old_evaluation(folio, self.d, self.user_customer)

    def contribution_deco(self, group_result, cur_group_portfolio_result):
        """贡献分解."""
        g_data = group_result["contribution_decomposition"]
        cur_group_portfolio_result["contribution_decomposition"] = draw_contribution_chart(g_data['xlabels'], g_data['product_list'], g_data['cumulative'])

    def single_fund_comment(self, portfolio_diagnose, cur_group_portfolio_result):
        """个基点评."""
        single_fund_data_list = []
        portfolio_evaluation = portfolio_diagnose.old_portfolio_evaluation()
赵杰's avatar
赵杰 committed
139
        index_compare_chart_data = portfolio_diagnose.original_fund_index_compare(self.user_customer.fund_cnav_total)
赵杰's avatar
赵杰 committed
140 141 142 143 144 145 146 147
        # with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
        #     res = executor.map(draw_index_combination_chart, index_compare_chart_data)
        # res = list(res)
        res = []
        for chart_data in index_compare_chart_data:
            r = draw_index_combination_chart(chart_data)
            res.append(r)

赵杰's avatar
赵杰 committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        for i in range(len(portfolio_evaluation)):
            single_fund_data_list.append({
                'fund_name': portfolio_evaluation[i]['name'],
                'status': portfolio_evaluation[i]['status'],
                'evaluation': portfolio_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["single_fund_data_list"] = single_fund_data_list

    def get_old_compare_pic(self, cur_group_portfolio_result):
        """旧收益比较"""
        cur_group_portfolio_result["old_return_compare_pic"] = draw_old_combination_chart(cur_group_portfolio_result["old_return_compare_data"]["xlabels"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["origin_combination"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["index"])

    def get_transfer_suggestions(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """新收益比较,调仓建议"""
        cur_group_portfolio_result["suggestions_result"], cur_group_portfolio_result["suggestions_result_asset"], \
        cur_group_portfolio_result["return_compare_data"], \
        cur_group_portfolio_result["indicator_compare"], cur_group_portfolio_result["new_group_evaluation"] = portfolio_diagnose.new_evaluation(folio, self.d,
                                                                                                   self.user_customer)

        cur_group_portfolio_result["return_compare_pic"] = draw_combination_chart(cur_group_portfolio_result["return_compare_data"]["xlabels"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["new_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["origin_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["index"])

    def get_old_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """旧相关性分析."""
177
        old_correlation = cur_group_portfolio_result["correlation"]
赵杰's avatar
赵杰 committed
178 179 180
        old_correlation_columns = old_correlation.columns.tolist()
        old_correlation_values = old_correlation.values.tolist()
        cur_group_portfolio_result["old_correlation"] = list(zip(range(1, len(old_correlation_columns)+1), old_correlation_columns, old_correlation_values))
赵杰's avatar
赵杰 committed
181
        del cur_group_portfolio_result["correlation"]
赵杰's avatar
赵杰 committed
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    def get_new_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """新相关性分析."""
        new_correlation = portfolio_diagnose.new_correlation
        new_correlation_columns = new_correlation.columns.tolist()
        new_correlation_values = new_correlation.values.tolist()
        cur_group_portfolio_result["new_correlation"] = list(zip(range(1, len(new_correlation_columns)+1), new_correlation_columns, new_correlation_values))

    def propose_fund(self, portfolio_diagnose, cur_group_portfolio_result):
        """新增基金"""
        # 优化组合建议1 -- 新增基金
        propose_fund_data_list = []
        propose_fund_evaluation = portfolio_diagnose.propose_fund_evaluation()
        propose_radar_chart_data = portfolio_diagnose.propose_fund_radar()
        with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
            res = executor.map(gen_radar_chart, propose_radar_chart_data)
        res = list(res)
        for i in range(len(propose_fund_evaluation)):
            propose_fund_data_list.append({
                'fund_name': propose_fund_evaluation[i]['name'],
                'status': '增仓',
                'evaluation': propose_fund_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["propose_fund_data_list"] = propose_fund_data_list

    def objectives_performance(self, group_result, cur_group_portfolio_result):
        """目标与业绩"""

赵杰's avatar
赵杰 committed
211 212 213 214 215 216 217 218 219 220 221
        cur_group_portfolio_result["totoal_rate_of_return"] = "%.2f" % round((group_result['cumulative_return']-1)*100, 2)       # 成立以来累计收益率
        cur_group_portfolio_result["annualised_return"] = "%.2f" % round(group_result["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["volatility"] = "%.2f" % round(group_result["volatility"]*100, 2)
        cur_group_portfolio_result["max_withdrawal"] = "%.2f" % round(group_result["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["sharpe_ratio"] = "%.2f" % round(group_result["sharpe"], 2)
        cur_group_portfolio_result["cost_of_investment"] = "%.2f" % round(group_result["total_cost"]/10000.0, 2)    # 投资成本
        cur_group_portfolio_result["index_section_return"] = "%.2f" % round((group_result["index_result"]["return_ratio"]-1)*100, 2)
        cur_group_portfolio_result["index_annualised_return"] = "%.2f" % round(group_result["index_result"]["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["index_volatility"] = "%.2f" % round(group_result["index_result"]["volatility"]*100, 2)
        cur_group_portfolio_result["index_max_withdrawal"] = "%.2f" % round(group_result["index_result"]["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["index_sharpe_ratio"] = "%.2f" % round(group_result["index_result"]["sharpe"], 2)
赵杰's avatar
赵杰 committed
222 223 224 225 226

        cur_group_portfolio_result["group_nav_info"] = group_result["group_nav_info"]
        cur_group_portfolio_result["group_hoding_info"] = group_result["group_hoding_info"]
        cur_group_portfolio_result["group_hoding_info_total"] = group_result["group_hoding_info_total"]

pengxiong's avatar
pengxiong committed
227
    def get_template_data(self, default_template=None):
pengxiong's avatar
pengxiong committed
228
        """"""
pengxiong's avatar
pengxiong committed
229 230 231
        if self.type == 1:
            # 持仓报告数据
            data = {
赵杰's avatar
赵杰 committed
232 233
                # 全局数据
                'customer_name': self.customer_name,
pengxiong's avatar
pengxiong committed
234
                'year_month': self.user_customer.end_date.strftime("%Y-%m-%d"),
pengxiong's avatar
pengxiong committed
235
                'valueSex': self.user_customer.valueSex,
赵杰's avatar
赵杰 committed
236 237 238 239 240
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'latest_worth_day': self.user_customer.last_nav_date,
                'customer_level': '平衡型',
                # 综述数据
pengxiong's avatar
pengxiong committed
241 242
                'now_allocation_amount': '{:,}'.format(self.total_cost), 'now_yield': self.now_yield,
                'index_yield': self.index_yield,
赵杰's avatar
赵杰 committed
243
                'now_annualised_return': self.now_annualised_return,
pengxiong's avatar
pengxiong committed
244 245 246 247
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal,
                'expected_withdrawal': 20,
                'now_year_income': '{:,}'.format(self.now_year_income),
                'now_month_income': '{:,}'.format(self.now_month_income),
赵杰's avatar
赵杰 committed
248
                'final_balance': '{:,}'.format(self.final_balance), 'total_profit': '{:,}'.format(self.total_profit),
赵杰's avatar
赵杰 committed
249 250
                'total_profit_temp': self.total_profit,
                'now_year_income_temp': self.now_year_income, 'now_month_income_temp': self.now_month_income,
赵杰's avatar
赵杰 committed
251 252 253 254 255 256 257 258

                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'monthly_table_return': self.monthly_table_return,

                # 组合数据
                'all_folio_result': self.all_folio_result,

pengxiong's avatar
pengxiong committed
259
            }
pengxiong's avatar
pengxiong committed
260 261 262 263
            if default_template:
                self.data = {**default_template, **data}
            else:
                self.data = {**hold_default_template, **data}
pengxiong's avatar
pengxiong committed
264 265 266 267 268
        elif self.type == 2:
            # 诊断报告数据
            data = {
                # 全局数据
                'customer_name': self.customer_name,
赵杰's avatar
赵杰 committed
269
                'year_month': self.user_customer.end_date.strftime("%Y-%m-%d"),
pengxiong's avatar
pengxiong committed
270
                'valueSex': self.user_customer.valueSex,
pengxiong's avatar
pengxiong committed
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'latest_worth_day': self.user_customer.last_nav_date,
                'customer_level': '平衡型',
                # 综述数据
                'now_allocation_amount': '{:,}'.format(self.total_cost), 'now_yield': self.now_yield,
                'index_yield': self.index_yield,
                'now_annualised_return': self.now_annualised_return,
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal,
                'expected_withdrawal': 20,
                'now_year_income': '{:,}'.format(self.now_year_income),
                'now_month_income': '{:,}'.format(self.now_month_income),
                'final_balance': '{:,}'.format(self.final_balance), 'total_profit': '{:,}'.format(self.total_profit),
                'total_profit_temp': self.total_profit,
                'now_year_income_temp': self.now_year_income, 'now_month_income_temp': self.now_month_income,
赵杰's avatar
赵杰 committed
286

pengxiong's avatar
pengxiong committed
287 288 289
                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'monthly_table_return': self.monthly_table_return,
赵杰's avatar
赵杰 committed
290

pengxiong's avatar
pengxiong committed
291 292 293
                # 组合数据
                'all_folio_result': self.all_folio_result,
            }
pengxiong's avatar
pengxiong committed
294 295 296 297
            if default_template:
                self.data = {**default_template, **data}
            else:
                self.data = {**hold_default_template, **data}
pengxiong's avatar
pengxiong committed
298 299
        return self.data

pengxiong's avatar
pengxiong committed
300
    def render_data(self, data=None):
pengxiong's avatar
pengxiong committed
301
        # 全部数据
pengxiong's avatar
pengxiong committed
302 303
        if data:
            self.data = data
赵杰's avatar
赵杰 committed
304 305 306 307
        # 开始渲染html模板
        env = Environment(loader=PackageLoader('app', 'templates'))  # 创建一个包加载器对象
        # template = env.get_template('monthReport.html')  # 获取一个模板文件
        template = env.get_template('/v2/monthReportV2.1.html')  # 获取一个模板文件
pengxiong's avatar
pengxiong committed
308
        monthReport_html = template.render(self.data).replace('None', 'none')  # 渲染
赵杰's avatar
赵杰 committed
309
        # 保存 monthReport_html
310
        # save_file = "app/pdf/monthReport.html"
pengxiong's avatar
pengxiong committed
311 312
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
赵杰's avatar
赵杰 committed
313 314 315 316

        # save_file = "app/html/v2/monthReportV2.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
pengxiong's avatar
pengxiong committed
317
        html_to_pdf(monthReport_html, pdf_save_folder + self.pdf_name)
赵杰's avatar
赵杰 committed
318 319 320 321


if __name__ == '__main__':
    start = time.time()
赵杰's avatar
赵杰 committed
322
    dt = DataIntegrate(ifa_id='USER_INFO15955928945523', customer_id='67347292618078412802', type=2)
pengxiong's avatar
pengxiong committed
323
    data = dt.get_template_data()
pengxiong's avatar
pengxiong committed
324
    dt.render_data()
赵杰's avatar
赵杰 committed
325
    print('耗时{}秒'.format(round(time.time()-start, 2)))