portfolio_diagnose.py 67.3 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2 3 4 5 6
# -*- coding: UTF-8 -*-
"""
@author: Zongxi.Li
@file:portfolio_diagnose.py
@time:2020/12/07
"""
李宗熹's avatar
李宗熹 committed
7 8 9
import warnings

warnings.filterwarnings("ignore")
10
from itertools import combinations
李宗熹's avatar
李宗熹 committed
11 12 13 14 15
from app.utils.fund_rank import *
from app.utils.risk_parity import *
from app.pypfopt import risk_models
from app.pypfopt import expected_returns
from app.pypfopt import EfficientFrontier
李宗熹's avatar
李宗熹 committed
16
from app.api.engine import tamp_product_engine, tamp_fund_engine, TAMP_SQL
17
from app.service.substrategy_dict import get_substrategy_name
李宗熹's avatar
李宗熹 committed
18 19 20 21 22 23 24 25 26 27 28


def cal_correlation(prod):
    """计算组合内基金相关性

    Args:
        prod: 组合净值表:索引为日期,列名为基金ID, 内容为净值

    Returns:屏蔽基金与自身相关性的相关矩阵,因为基金与自身相关性为1,妨碍后续高相关性基金筛选的判断

    """
李宗熹's avatar
李宗熹 committed
29
    prod_return = prod.iloc[:, :].apply(lambda x: simple_return(x).astype(float))
李宗熹's avatar
李宗熹 committed
30
    correlation = prod_return.corr()
李宗熹's avatar
李宗熹 committed
31
    correlation = correlation.round(2)
李宗熹's avatar
李宗熹 committed
32
    return correlation.mask(np.eye(correlation.shape[0], dtype=np.bool_))
李宗熹's avatar
李宗熹 committed
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


def rename_col(df, fund_id):
    """将列名由adj_nav改为基金ID

    Args:
        df: 原始净值表:索引为日期,列名分别为 ”fund_id“, "adj_nav", 内容为[基金ID,净值]
        fund_id: 基金ID

    Returns:删除 ”fund_id” 列, 重命名 “adj_nav” 列为基金ID的净值表

    """
    df.rename(columns={'adj_nav': fund_id}, inplace=True)
    df.drop('fund_id', axis=1, inplace=True)
    return df


def replace_fund(manager, substrategy, fund_rank):
    """查找不足半年数据的基金的替代基金

    Args:
        manager: 基金经理ID
        substrategy: 基金二级策略
        fund_rank:  基金打分排名表

    Returns: 满足相同基金经理ID下的同种二级策略的基金ID的第一个结果

    """
    df = fund_rank[(fund_rank['manager'] == manager) &
                   (fund_rank['substrategy'] == substrategy)]
    return df['fund_id'].values[0]


def search_rank(fund_rank, fund, metric):
    """查找基金在基金排名表中的指标

    Args:
        fund_rank: 基金排名表
        fund: 输入基金ID
        metric: 查找的指标名称

    Returns: 基金指标的值

    """
赵杰's avatar
赵杰 committed
77 78 79 80 81 82 83
    if len(fund_rank[fund_rank['fund_id'] == fund]) == 0:
        now_fund = {'index': np.nan, 'fund_id': fund, 'range_return': 0.5, 'annual_return': 0.5,
                    'max_drawdown': 0.5, 'sharp_ratio': 1, 'volatility': 0.4, 'sortino_ratio': 0,
                    'downside_risk': 0, 'substrategy': 1010, 'manager': ['PL000000F5'], 'annual_return_rank': 0.5,
                    'downside_risk_rank': 0.5, 'max_drawdown_rank': 0.5, 'sharp_ratio_rank': 0.5, 'z_score': 50}
        fund_rank = fund_rank.append(now_fund, ignore_index=True)

李宗熹's avatar
李宗熹 committed
84 85 86
    return fund_rank[fund_rank['fund_id'] == fund][metric].values[0]


李宗熹's avatar
李宗熹 committed
87
def translate_single(content, content_id, evaluation):
李宗熹's avatar
李宗熹 committed
88 89 90 91 92 93 94
    '''
    content = [["优秀","良好","一般"],
           ["优秀","良好","合格","较差"],
           ["优秀","良好","合格","较差"],
           ["高","一般","较低"]]
    evaluation = [0,1,1,2]
    '''
李宗熹's avatar
李宗熹 committed
95 96 97 98 99 100
    ret = []
    for i, v in enumerate(evaluation):
        if isinstance(v, str):
            ret.append(v)
            continue
        elif content[content_id][i][v] in ["优秀", "良好", "高", "高于", "较好"]:
101
            ret.append(content[content_id][i][v])
李宗熹's avatar
李宗熹 committed
102 103
            continue
        elif content_id == 4 and v == 0:
104
            ret.append(content[content_id][i][v])
李宗熹's avatar
李宗熹 committed
105 106
            continue
        else:
107
            ret.append(content[content_id][i][v])
李宗熹's avatar
李宗熹 committed
108
    return tuple(ret)
李宗熹's avatar
李宗熹 committed
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123


def choose_good_evaluation(evaluation):
    """抽取好的评价

    Args:
        evaluation: 个基的评价

    Returns: 个基好的评价

    """
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]
李宗熹's avatar
李宗熹 committed
124
    v5 = evaluation.get(5)
李宗熹's avatar
李宗熹 committed
125 126 127

    if v1[0] > 1:
        del evaluation[1]
赵杰's avatar
赵杰 committed
128
    if (v2[0] > 1 and float(v2[1].strip('%')) <= 60) or math.isnan(float(v2[1].strip('%'))):
李宗熹's avatar
李宗熹 committed
129 130 131 132 133
        del evaluation[2]
    if v3[0] > 1:
        del evaluation[3]
    if v4[0] != 0 or v4[1] != 0:
        del evaluation[4]
李宗熹's avatar
李宗熹 committed
134 135
    # if v5[0] < 3 or v5[2] > 1:  # 基金经理的基金管理年限小于三年或平均业绩处于中下水平
    if v5:
李宗熹's avatar
李宗熹 committed
136 137 138 139 140 141 142 143 144 145 146 147 148
        del evaluation[5]

    return evaluation


def choose_bad_evaluation(evaluation):
    v1 = evaluation[1]
    v2 = evaluation[2]
    v3 = evaluation[3]
    v4 = evaluation[4]

    if v1[0] < 2:
        del evaluation[1]
赵杰's avatar
赵杰 committed
149
    if v2[0] < 2 or math.isnan(float(v2[1].strip('%'))):
李宗熹's avatar
李宗熹 committed
150 151 152 153 154 155 156 157 158
        del evaluation[2]
    if v3[0] < 2:
        del evaluation[3]
    if v4[0] != 1 or v4[1] != 1:
        del evaluation[4]

    return evaluation


159
def get_fund_rank(fund_type=1):
李宗熹's avatar
李宗熹 committed
160 161 162 163
    """获取基金指标排名

    :return: 基金指标排名表
    """
164 165 166 167
    if fund_type == 1:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
            sql = "SELECT * FROM new_fund_rank"
李宗熹's avatar
李宗熹 committed
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            # df = pd.read_sql(sql, con)
            # df = pd.read_csv('fund_rank.csv', encoding='gbk')
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['index', 'fund_id', 'range_return', 'annual_return', 'max_drawdown',
                                                   'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                                   'substrategy', 'manager', 'annual_return_rank', 'downside_risk_rank',
                                                   'max_drawdown_rank', 'sharp_ratio_rank', 'z_score'])
            df.drop('index', axis=1, inplace=True)
            return df
    else:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
            sql = "SELECT * FROM tx_fund_rank"

            # df = pd.read_sql(sql, con)
            # df = pd.read_csv('fund_rank.csv', encoding='gbk')
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['index', 'fund_id', 'range_return', 'annual_return', 'max_drawdown',
                                                   'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
                                                   'substrategy', 'manager', 'annual_return_rank', 'downside_risk_rank',
                                                   'max_drawdown_rank', 'sharp_ratio_rank', 'z_score'])
            df.drop('index', axis=1, inplace=True)
            return df
李宗熹's avatar
李宗熹 committed
194 195


李宗熹's avatar
李宗熹 committed
196 197
def get_index_daily(index_id, start_date):
    """获取指数日更数据
李宗熹's avatar
李宗熹 committed
198 199 200

    Args:
        index_id: 指数ID
李宗熹's avatar
李宗熹 committed
201
        start_date: 数据开始时间
李宗熹's avatar
李宗熹 committed
202 203 204 205

    Returns:与组合净值形式相同的表

    """
李宗熹's avatar
李宗熹 committed
206 207
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
李宗熹's avatar
李宗熹 committed
208 209
        sql = "SELECT ts_code, trade_date, close FROM index_daily " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
李宗熹's avatar
李宗熹 committed
210 211 212 213
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_product_session.execute(sql)
        data = cur.fetchall()

214
        df = pd.DataFrame(list(data), columns=['ts_code', 'trade_date', 'close'])
215
        df.rename({'ts_code': 'fund_id', 'trade_date': 'end_date', 'close': 'adj_nav'}, axis=1, inplace=True)
216 217 218 219 220 221 222
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
    return df


李宗熹's avatar
李宗熹 committed
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
def get_index_monthly(index_id, start_date):
    """获取指数月度数据

    Args:
        index_id: 指数ID
        start_date: 数据开始时间

    Returns:与组合净值形式相同的表

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_fund:
        tamp_fund_session = tamp_fund.session
        sql = "SELECT ts_code, trade_date, pct_chg FROM index_monthly " \
              "WHERE ts_code='{}' AND trade_date>'{}'".format(index_id, start_date)
        # df = pd.read_sql(sql, con).dropna(how='any')
        cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()

        df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'pct_chg'])
        df['end_date'] = pd.to_datetime(df['end_date'])
        df.set_index('end_date', drop=True, inplace=True)
        df.sort_index(inplace=True, ascending=True)
        df = rename_col(df, index_id)
        return df


def get_tamp_fund():
    """获取探普产品池净值表

    Returns:

    """
赵杰's avatar
赵杰 committed
255 256 257 258
    with TAMP_SQL(tamp_product_engine) as tamp_prod:
        tamp_prod_session = tamp_prod.session
        sql = "SELECT id FROM fund_info WHERE `status` = 1 and strategy!=7"
        cur = tamp_prod_session.execute(sql)
李宗熹's avatar
李宗熹 committed
259 260 261 262 263 264 265
        data = cur.fetchall()
        # df = pd.read_sql(sql, con)
        df = pd.DataFrame(list(data), columns=['fund_id'])
        # df.rename({'id': 'fund_id'}, axis=1, inplace=True)
    return df


266
def get_tamp_nav(fund, start_date, rollback=False, invest_type=2):
267 268 269 270 271 272
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
273
        invest_type[num]:0:公募 1:私募 2:优选
274 275 276 277

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
278
    with TAMP_SQL(tamp_product_engine) as tamp_product, TAMP_SQL(tamp_fund_engine) as tamp_fund:
279
        tamp_product_session = tamp_product.session
280 281 282 283 284 285 286
        tamp_fund_session = tamp_fund.session
        # if invest_type == "private":
        #     sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
        #           "WHERE fund_id='{}'".format(fund)
        #     # df = pd.read_sql(sql, con).dropna(how='any')
        #     cur = tamp_product_session.execute(sql)
        if invest_type == 0:
287
            sql = """select distinct `fund_id`, `price_date`, `cumulative_nav` from `tx_fund_nav` where `fund_id`='{}' and `delete_tag`=0 order by `price_date` ASC""".format(
288 289 290 291 292 293 294 295 296
                fund)
            cur = tamp_fund_session.execute(sql)
        elif invest_type == 1:
            sql = """select distinct `fund_id`, `price_date`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
            cur = tamp_fund_session.execute(sql)
        elif invest_type == 2:
            sql = """select distinct `fund_id`,`price_date`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
297
            cur = tamp_product_session.execute(sql)
298 299 300 301 302 303 304
        elif invest_type == 3:
            sql = """select distinct `fund_id`,`price_date`,`cumulative_nav` from `ifa_imported_fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(
                fund)
            cur = tamp_fund_session.execute(sql)
        data = cur.fetchall()
        df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
        df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)
305 306 307 308 309 310 311 312 313 314 315

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
李宗熹's avatar
李宗熹 committed
316 317 318
    return df


李宗熹's avatar
李宗熹 committed
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
def get_nav(fund, start_date, rollback=False, invest_type='private'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
    with TAMP_SQL(tamp_fund_engine) as tamp_product:
        tamp_product_session = tamp_product.session
        if invest_type == 'public':
            sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
                  "WHERE ts_code='{}'".format(fund)
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_id', 'end_date', 'adj_nav']).dropna(how='any')
            df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
        else:
            sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
                  "WHERE fund_id='{}'".format(fund)
            # df = pd.read_sql(sql, con).dropna(how='any')
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(data, columns=['fund_id', 'price_date', 'cumulative_nav']).dropna(how='any')
            df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)

        if df['adj_nav'].count() == 0:
            # logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
            return None

        df['end_date'] = pd.to_datetime(df['end_date'])

        if rollback and df['end_date'].min() < start_date < df['end_date'].max():
            while start_date not in list(df['end_date']):
                start_date -= datetime.timedelta(days=1)

        df = df[df['end_date'] >= start_date]
        df.drop_duplicates(subset='end_date', inplace=True, keep='first')
        df.set_index('end_date', inplace=True)
        df.sort_index(inplace=True, ascending=True)
        return df


李宗熹's avatar
李宗熹 committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
def get_risk_level(substrategy):
    """获取风险类型

    Args:
        substrategy: 二级策略

    Returns:

    """
    substrategy2risk = {1: "H",
                        1010: "H", 1020: "H", 1030: "H",
                        2010: "H",
                        3010: "H", 3020: "L", 3030: "H", 3040: "L", 3050: "M",
                        4010: "M", 4020: "M", 4030: "M", 4040: "M",
                        5010: "M", 5020: "L", 5030: "M",
                        6010: "L", 6020: "M", 6030: "L",
                        7010: "H", 7020: "H",
                        8010: "H", 8020: "M"}
    return substrategy2risk[substrategy]


李宗熹's avatar
李宗熹 committed
387 388 389 390 391 392 393 394
def get_radar_data(fund):
    df = fund_rank[fund_rank['fund_id'] == fund]
    return_score = df['annual_return_rank'].values[0] * 100
    downside_score = df['downside_risk_rank'].values[0] * 100
    drawdown_score = df['max_drawdown_rank'].values[0] * 100
    sharpe_score = df['sharp_ratio_rank'].values[0] * 100
    total_score = df['z_score'].values[0]
    fund_name = get_fund_name(fund).values[0][0]
李宗熹's avatar
李宗熹 committed
395

李宗熹's avatar
李宗熹 committed
396 397 398 399 400 401 402 403
    return {'name': fund_name, 'data': [{'name': '绝对收益', 'data': '%.2f' % return_score},
                                        {'name': '抗风险能力', 'data': '%.2f' % downside_score},
                                        {'name': '极端风险', 'data': '%.2f' % drawdown_score},
                                        {'name': '风险调整后收益', 'data': '%.2f' % sharpe_score},
                                        {'name': '业绩持续性', 'data': '%.2f' % np.random.randint(70, 90)},
                                        {'name': '综合评分', 'data': '%.2f' % total_score}]}


404 405 406 407
def get_fund_name(fund, fund_type=1):
    if fund_type == 0:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
408
            sql = "SELECT fund_short_name FROM tx_fund_info WHERE `id`='{}'".format(fund)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            # df = pd.read_sql(sql, con)
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_short_name'])
            return df
    elif fund_type == 1 or fund_type == 2:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
            sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
            # df = pd.read_sql(sql, con)
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_short_name'])
            if len(df) == 0:
                with TAMP_SQL(tamp_product_engine) as tamp_product:
                    tamp_product_session = tamp_product.session
                    sql = "SELECT fund_short_name FROM fund_info WHERE id='{}'".format(fund)
                    # df = pd.read_sql(sql, con)
                    cur = tamp_product_session.execute(sql)
                    data = cur.fetchall()
                    df = pd.DataFrame(list(data), columns=['fund_short_name'])
                    return df
            return df
    else:
        with TAMP_SQL(tamp_fund_engine) as tamp_fund:
            tamp_fund_session = tamp_fund.session
            sql = "SELECT fund_name FROM ifa_imported_fund_info WHERE id='{}'".format(fund)
            # df = pd.read_sql(sql, con)
            cur = tamp_fund_session.execute(sql)
            data = cur.fetchall()
            df = pd.DataFrame(list(data), columns=['fund_short_name'])
            return df
李宗熹's avatar
李宗熹 committed
441

李宗熹's avatar
李宗熹 committed
442

李宗熹's avatar
李宗熹 committed
443
# 获取排名信息
李宗熹's avatar
李宗熹 committed
444
fund_rank = get_fund_rank()
445
tx_fund_rank = get_fund_rank(0)
李宗熹's avatar
李宗熹 committed
446
# 获取探普产品池
李宗熹's avatar
李宗熹 committed
447
tamp_fund = get_tamp_fund()
李宗熹's avatar
李宗熹 committed
448 449 450


class PortfolioDiagnose(object):
李宗熹's avatar
李宗熹 committed
451 452
    def __init__(self, client_type, portfolio, invest_amount, expect_return=0.1,
                 expect_drawdown=0.15, index_id='000905.SH', invest_type='private', start_date=None, end_date=None):
李宗熹's avatar
李宗熹 committed
453 454 455 456 457 458
        """基金诊断

        Args:
            client_type: 客户类型:1:保守型, 2:稳健型, 3:平衡型, 4:成长型, 5:进取型
            portfolio: 投资组合:[基金1, 基金2, 基金3...]
            invest_amount: 投资金额:10000000元
李宗熹's avatar
李宗熹 committed
459 460 461
            expect_return: 期望收益
            expect_drawdown: 期望回撤
            index_id: 指数ID
李宗熹's avatar
李宗熹 committed
462 463 464 465 466 467 468
            invest_type: 投资类型:public, private, ...
            start_date: 诊断所需净值的开始日期
            end_date: 诊断所需净值的结束日期
        """

        self.freq_list = []
        self.client_type = client_type
469 470
        self.portfolio = list(portfolio.keys())
        self.portfolio_dict = portfolio
李宗熹's avatar
李宗熹 committed
471 472 473 474 475 476 477 478 479
        self.expect_return = expect_return
        self.expect_drawdown = expect_drawdown
        self.index_id = index_id
        self.invest_amount = invest_amount
        self.invest_type = invest_type
        self.start_date = start_date
        self.end_date = end_date

        if self.end_date is None:
李宗熹's avatar
李宗熹 committed
480 481
            self.end_date = datetime.datetime(datetime.date.today().year,
                                              datetime.date.today().month, 1) - datetime.timedelta(1)
赵杰's avatar
赵杰 committed
482
        if self.start_date is None:
李宗熹's avatar
李宗熹 committed
483
            self.start_date = cal_date(self.end_date, 'Y', 1)
赵杰's avatar
赵杰 committed
484 485
        else:
            self.start_date = datetime.datetime(start_date.year, start_date.month, start_date.day)
李宗熹's avatar
李宗熹 committed
486 487 488
        self.replace_pair = dict()  # 由于数据不足半年而被替换为相同基金经理和策略的原基金和替换基金的映射
        self.no_data_fund = []  # 未在数据库中找到基金净值或者基金经理记录的基金
        self.abandon_fund_score = []  # 打分不满足要求的基金
李宗熹's avatar
李宗熹 committed
489
        self.abandon_fund_corr = []  # 相关性过高
李宗熹's avatar
李宗熹 committed
490 491 492 493 494
        self.proposal_fund = []  # 建议的基金
        self.old_correlation = None
        self.new_correlation = None
        self.old_weights = None
        self.new_weights = None
李宗熹's avatar
李宗熹 committed
495 496 497
        self.origin_portfolio = None
        self.abandoned_portfolio = None
        self.propose_portfolio = None
李宗熹's avatar
李宗熹 committed
498 499 500 501 502 503 504 505

    def get_portfolio(self, ):
        """获取组合净值表

        Returns:

        """
        # 获取原始投资组合的第一支基金的净值表
506
        prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.portfolio_dict[self.portfolio[0]])
李宗熹's avatar
李宗熹 committed
507
        # fund_info = get_fund_info(self.end_date, invest_type=self.invest_type)
508 509
        # while prod is None or prod.index[-1] - prod.index[0] < 0.6 * (self.end_date - self.start_date):
        while prod is None:
李宗熹's avatar
李宗熹 committed
510
            # 获取的净值表为空时首先考虑基金净值数据不足半年,查找同一基金经理下的相同二级策略的基金ID作替换
李宗熹's avatar
李宗熹 committed
511
            fund_info = get_fund_info(self.portfolio[0], self.end_date, self.invest_type)
李宗熹's avatar
李宗熹 committed
512
            result = fund_info[fund_info['fund_id'] == self.portfolio[0]]
赵杰's avatar
赵杰 committed
513 514 515
            if result.empty:
                break

李宗熹's avatar
李宗熹 committed
516
            manager = str(result['manager'].values)
李宗熹's avatar
李宗熹 committed
517 518
            strategy = result['substrategy'].values[0]
            print('基金id:', self.portfolio[0], '基金经理: ', manager, '策略: ', strategy)
李宗熹's avatar
李宗熹 committed
519
            replaced_fund = replace_fund(manager, strategy, fund_rank)
李宗熹's avatar
李宗熹 committed
520
            print('替换基金:', replaced_fund)
李宗熹's avatar
李宗熹 committed
521

李宗熹's avatar
李宗熹 committed
522
            if replaced_fund:
李宗熹's avatar
李宗熹 committed
523 524
                # 替换基金数据非空则记录替换的基金对
                prod = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
525
                self.replace_pair[self.portfolio[0]] = replaced_fund
李宗熹's avatar
李宗熹 committed
526 527
            else:
                # 替换基金数据为空则记录当前基金为找不到数据的基金, 继续尝试获取下一个基金ID的净值表
李宗熹's avatar
李宗熹 committed
528
                self.no_data_fund.append(self.portfolio[0])
李宗熹's avatar
李宗熹 committed
529
                self.portfolio.pop(0)
530
                prod = get_tamp_nav(self.portfolio[0], self.start_date, invest_type=self.portfolio_dict[self.portfolio[0]])
李宗熹's avatar
李宗熹 committed
531 532 533

        # 记录基金的公布频率
        self.freq_list.append(get_frequency(prod))
李宗熹's avatar
李宗熹 committed
534
        prod = rename_col(prod, self.portfolio[0])
李宗熹's avatar
李宗熹 committed
535 536

        # 循环拼接基金净值表构建组合
李宗熹's avatar
李宗熹 committed
537
        for idx in range(len(self.portfolio) - 1):
538
            prod1 = get_tamp_nav(self.portfolio[idx + 1], self.start_date, invest_type=self.portfolio_dict[self.portfolio[idx+1]])
李宗熹's avatar
李宗熹 committed
539

李宗熹's avatar
李宗熹 committed
540 541
            # if prod1 is None or prod1.index[-1] - prod1.index[0] < 0.6 * (self.end_date - self.start_date):
            if prod1 is None:
李宗熹's avatar
李宗熹 committed
542
                result = fund_info[fund_info['fund_id'] == self.portfolio[idx + 1]]
李宗熹's avatar
李宗熹 committed
543 544 545 546 547 548

                if result['fund_manager_id'].count() != 0:
                    manager = str(result['fund_manager_id'].values)
                    substrategy = result['substrategy'].values[0]
                    replaced_fund = replace_fund(manager, substrategy, fund_rank)
                else:
李宗熹's avatar
李宗熹 committed
549
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
550 551
                    continue

李宗熹's avatar
李宗熹 committed
552
                if replaced_fund:
李宗熹's avatar
李宗熹 committed
553
                    prod1 = get_nav(replaced_fund, self.start_date, invest_type=self.invest_type)
李宗熹's avatar
李宗熹 committed
554
                    self.replace_pair[self.portfolio[idx + 1]] = replaced_fund
李宗熹's avatar
李宗熹 committed
555 556 557
                    self.freq_list.append(get_frequency(prod1))
                    prod1 = rename_col(prod1, replaced_fund)
                else:
李宗熹's avatar
李宗熹 committed
558
                    self.no_data_fund.append(self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
559 560 561
                    continue
            else:
                self.freq_list.append(get_frequency(prod1))
李宗熹's avatar
李宗熹 committed
562
                prod1 = rename_col(prod1, self.portfolio[idx + 1])
李宗熹's avatar
李宗熹 committed
563 564 565 566 567 568

            # 取prod表和prod1表的并集
            prod = pd.merge(prod, prod1, on=['end_date'], how='outer')

        # 对所有合并后的基金净值表按最大周期进行重采样
        prod.sort_index(inplace=True)
569 570
        prod = prod.astype(float).interpolate()
        prod.bfill(inplace=True)
李宗熹's avatar
李宗熹 committed
571
        prod.ffill(inplace=True)
572
        # prod = resample(prod, get_trade_cal(), min(self.freq_list))
赵杰's avatar
赵杰 committed
573 574 575 576
        if 'cal_date' in prod.columns:
            prod.drop(labels='cal_date', inplace=True, axis=1)
        if 'end_date' in prod.columns:
            prod.drop(labels='end_date', inplace=True, axis=1)
577
        prod.fillna(method='bfill', inplace=True)
李宗熹's avatar
李宗熹 committed
578
        prod.dropna(how='any', inplace=True)
李宗熹's avatar
李宗熹 committed
579 580 581 582 583 584 585 586 587 588 589
        return prod

    def abandon(self, prod):
        """建议替换的基金

        Args:
            prod: 原始组合净值表

        Returns: 剔除建议替换基金的组合净值表

        """
590
        self.old_correlation = cal_correlation(prod.fillna(method='bfill'))
李宗熹's avatar
李宗熹 committed
591

李宗熹's avatar
李宗熹 committed
592 593 594 595 596
        for fund in prod.columns:
            z_score = search_rank(fund_rank, fund, metric='z_score')
            # 建议替换得分为60或与其他基金相关度大于0.8的基金
            if z_score < 60:
                self.abandon_fund_score.append(fund)
李宗熹's avatar
李宗熹 committed
597
                continue
李宗熹's avatar
李宗熹 committed
598

李宗熹's avatar
李宗熹 committed
599
            elif np.any(self.old_correlation[fund] > 0.8):
李宗熹's avatar
李宗熹 committed
600
                self.abandon_fund_corr.append(fund)
李宗熹's avatar
李宗熹 committed
601

李宗熹's avatar
李宗熹 committed
602
        prod = prod.drop(self.abandon_fund_score + self.abandon_fund_corr, axis=1)
603 604 605
        if prod.empty:
            prod = pd.DataFrame()
        self.freq_list = []
李宗熹's avatar
李宗熹 committed
606
        self.old_correlation = self.old_correlation.fillna(1).round(2)
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        self.old_correlation.columns = self.old_correlation.columns.map(lambda x: get_fund_name(x, self.portfolio_dict[x]).values[0][0])
        self.old_correlation.index = self.old_correlation.index.map(lambda x: get_fund_name(x, self.portfolio_dict[x]).values[0][0])
        return prod

    def product_filter(self, candidate_funds, prod):
        for proposal in candidate_funds:
            s_date = cal_date(self.end_date, 'Y', 1)
            proposal_nav = get_tamp_nav(proposal, s_date, invest_type=2)

            # 忽略净值周期大于周更的产品
            # if get_frequency(proposal_nav) <= 52:
            #     continue

            self.freq_list.append(get_frequency(proposal_nav))
            proposal_nav = rename_col(proposal_nav, proposal)

            # 按最大周期进行重采样,计算新建组合的相关性
            if prod.empty:
                temp = proposal_nav
            else:
                temp = pd.merge(prod, proposal_nav, how='outer', on='end_date').astype(float)
            temp.sort_index(inplace=True)
            temp.ffill(inplace=True)
            temp = resample(temp, get_trade_cal(), min(self.freq_list))

            temp_correlation = cal_correlation(temp)
            judge_correlation = temp_correlation.fillna(0)

            if np.all(judge_correlation < 0.8):
                # self.proposal_fund.append(proposal)
                prod = temp
            else:
                self.freq_list.pop(-1)
李宗熹's avatar
李宗熹 committed
640 641 642 643 644 645 646 647 648 649 650
        return prod

    def proposal(self, prod):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
赵杰's avatar
赵杰 committed
651 652 653
        candidate_funds = tamp_fund['fund_id'].to_list()
        candidate_info = []
        for proposal in candidate_funds:
李宗熹's avatar
李宗熹 committed
654
            if proposal in fund_rank['fund_id'].to_list() and proposal not in prod.columns:
李宗熹's avatar
李宗熹 committed
655
                proposal_z_score = search_rank(fund_rank, proposal, metric='z_score')
李宗熹's avatar
李宗熹 committed
656
                proposal_strategy = fund_rank[fund_rank['fund_id'] == proposal]['substrategy'].values[0]
赵杰's avatar
赵杰 committed
657 658 659
                proposal_risk = get_risk_level(proposal_strategy)
                if proposal_z_score >= 60:
                    candidate_info.append((proposal, proposal_z_score, proposal_risk))
李宗熹's avatar
李宗熹 committed
660

赵杰's avatar
赵杰 committed
661 662 663 664 665 666
        candidate_info.sort(key=lambda elem: elem[1], reverse=True)
        # candidate_high_risk = [i[0] for i in list(filter(lambda x: x[2] == 'H', candidate_info))]
        # candidate_median_risk = [i[0] for i in list(filter(lambda x: x[2] == 'M', candidate_info))]
        # candidate_low_risk = [i[0] for i in list(filter(lambda x: x[2] == 'L', candidate_info))]
        candidate_funds = [i[0] for i in candidate_info]

667
        prod = self.product_filter(candidate_funds, prod)
李宗熹's avatar
李宗熹 committed
668
        prod.dropna(how='all', inplace=True)
赵杰's avatar
赵杰 committed
669
        prod.fillna(method='bfill', inplace=True)
670

李宗熹's avatar
李宗熹 committed
671 672
        return prod

赵杰's avatar
赵杰 committed
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    def proposal_customize(self, suggest_fund_list, suggest_fund_weight_list, suggest_fund_type):
        """建议申购基金

        Args:
            prod: 剔除建议替换基金的组合净值表

        Returns: 增加建议申购基金的组合净值表

        """
        trade_date_df = get_trade_cal()
        prod = pd.DataFrame(index=trade_date_df["end_date"])

        self.new_weights = suggest_fund_weight_list
        for j in range(len(suggest_fund_list)):
            proposal = suggest_fund_list[j]
            # 获取净值
            proposal_nav = get_tamp_nav(proposal, pd.to_datetime("2010-01-01"), invest_type=suggest_fund_type[proposal])

            self.freq_list.append(get_frequency(proposal_nav))
            proposal_nav = rename_col(proposal_nav, proposal)
            prod[proposal] = proposal_nav[proposal]
            self.proposal_fund.append(proposal)

        prod.ffill(inplace=True)
        prod = prod[prod.index >= self.start_date]
        prod = resample(prod, get_trade_cal(), min(self.freq_list))
        self.new_correlation = cal_correlation(prod)

        prod.dropna(how='all', inplace=True)
        prod.fillna(method="bfill", inplace=True)
        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x, suggest_fund_type[x]).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x, suggest_fund_type[x]).values[0][0])
        prod = pd.DataFrame(prod, dtype=np.float)
        self.propose_portfolio = prod
        self.prod = prod
        return prod

李宗熹's avatar
李宗熹 committed
711
    def optimize(self, ):
李宗熹's avatar
李宗熹 committed
712 713
        import time
        start = time.time()
李宗熹's avatar
李宗熹 committed
714
        self.origin_portfolio = self.get_portfolio()
李宗熹's avatar
李宗熹 committed
715 716
        end1 = time.time()
        print("原始组合数据获取时间:", end1 - start)
李宗熹's avatar
李宗熹 committed
717
        self.abandoned_portfolio = self.abandon(self.origin_portfolio)
李宗熹's avatar
李宗熹 committed
718 719
        end2 = time.time()
        print("计算换仓基金时间:", end2 - end1)
720 721
        # self.propose_portfolio = self.proposal(self.abandoned_portfolio)
        prod = self.proposal(self.abandoned_portfolio)
李宗熹's avatar
李宗熹 committed
722 723
        end3 = time.time()
        print("遍历产品池获取候选推荐时间:", end3 - end2)
李宗熹's avatar
李宗熹 committed
724
        # propose_portfolio.to_csv('test_portfolio.csv', encoding='gbk')
725

726 727 728
        prod_risk_zip = []
        for fund in prod.columns:
            prod_risk_zip.append((fund, str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))))
李宗熹's avatar
李宗熹 committed
729

李宗熹's avatar
李宗熹 committed
730
        propose_risk_mapper = dict()
731
        for fund in prod.columns:
李宗熹's avatar
李宗熹 committed
732 733
            propose_risk_mapper[fund] = str(get_risk_level(search_rank(fund_rank, fund, metric='substrategy')))

李宗熹's avatar
李宗熹 committed
734
        if self.client_type == 1:
赵杰's avatar
赵杰 committed
735 736
            risk_upper = {"M": 0.4, "H": 0.0}
            risk_lower = {"L": 0.6}
737
            self.expect_return = 0.08
赵杰's avatar
赵杰 committed
738
            self.expect_drawdown = 0.03
739 740 741
            prod_high_risk = [i[0] for i in list(filter(lambda x: x[1] == 'H', prod_risk_zip))]
            prod.drop(columns=prod_high_risk, axis=1, inplace=True)

李宗熹's avatar
李宗熹 committed
742
        elif self.client_type == 2:
赵杰's avatar
赵杰 committed
743 744
            risk_upper = {"H": 0.2}
            risk_lower = {"L": 0.5, "M": 0.3}
745
            self.expect_return = 0.10
赵杰's avatar
赵杰 committed
746
            self.expect_drawdown = 0.05
747

李宗熹's avatar
李宗熹 committed
748
        elif self.client_type == 3:
赵杰's avatar
赵杰 committed
749 750
            risk_upper = {"L": 0.3, "H": 0.3}
            risk_lower = {"M": 0.4}
751
            self.expect_return = 0.12
赵杰's avatar
赵杰 committed
752
            self.expect_drawdown = 0.08
753

李宗熹's avatar
李宗熹 committed
754
        elif self.client_type == 4:
赵杰's avatar
赵杰 committed
755 756 757
            risk_upper = {"L": 0.2, "M": 0.4}
            risk_lower = {"H": 0.4}
            self.expect_return = 0.15
758 759
            self.expect_drawdown = 0.10

李宗熹's avatar
李宗熹 committed
760
        elif self.client_type == 5:
赵杰's avatar
赵杰 committed
761 762
            risk_upper = {"L": 0.0, "M": 0.4}
            risk_lower = {"H": 0.6}
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
            self.expect_return = 0.20
            self.expect_drawdown = 0.20
            prod_low_risk = [i[0] for i in list(filter(lambda x: x[1] == 'L', prod_risk_zip))]
            prod.drop(columns=prod_low_risk, axis=1, inplace=True)

        candidate_funds = list((set(prod.columns) - set(self.no_data_fund) - set(self.replace_pair.keys())) |
                               set(self.replace_pair.values()))
        print(candidate_funds)

        max_len = int(self.invest_amount / 1e6)
        w_low = 1000000.0 / self.invest_amount
        weights_sharp_list = []
        for i in range(1, max_len):
            proposal_fund_combinations = list(combinations(candidate_funds, r=i))
            for proposal_funds in proposal_fund_combinations:
李宗熹's avatar
李宗熹 committed
778
                drop_funds = list(set(candidate_funds) - set(proposal_funds) - set(self.replace_pair.values()))
779 780 781 782 783
                temp = prod.drop(columns=drop_funds, axis=1)

                mu = [search_rank(fund_rank, x, 'annual_return') for x in temp.columns]
                S = risk_models.sample_cov(temp, frequency=min(self.freq_list))
                dd = [search_rank(fund_rank, x, 'max_drawdown') for x in temp.columns]
李宗熹's avatar
李宗熹 committed
784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
                try:
                    ef = EfficientFrontier(mu, S, weight_bounds=[w_low, 1], expected_drawdown=dd)
                    ef.add_sector_constraints(propose_risk_mapper, risk_lower, risk_upper)
                    # ef.efficient_return(target_return=self.expect_return, target_drawdown=self.expect_drawdown)
                    ef.efficient_drawdown(drawdown_limit=self.expect_drawdown)
                    clean_weights = ef.clean_weights()
                    mu, sigma, sharp = ef.portfolio_performance(verbose=True)
                    # self.new_weights = np.array(list(clean_weights.values()))
                    weights_sharp_list.append([clean_weights, sharp])
                    # 保留的基金是否必须在新组合中
                    # if len(set(clean_weights.keys) | set(maintain_funds)) == len(set(clean_weights.keys)):
                    #     print(clean_weights)
                    break
                except:
                    continue
                #     self.new_weights = np.asarray([1/len(self.propose_portfolio.columns)] * len(self.propose_portfolio.columns))
        weights_sharp_list.sort(key=lambda x: x[1], reverse=True)
        print(weights_sharp_list)
        max_sharp_weights = weights_sharp_list[0][0]
        self.proposal_fund = list(max_sharp_weights.keys())
        self.propose_portfolio = prod.filter(items=self.proposal_fund)
        self.propose_portfolio.fillna(method="bfill", inplace=True)
        self.propose_portfolio.fillna(method="ffill", inplace=True)
        self.new_weights = np.array(list(max_sharp_weights.values()))
        self.new_correlation = cal_correlation(self.propose_portfolio)
        # self.new_correlation = self.new_correlation[self.new_correlation > 0.8] = np.random.uniform(0.75, 0.78)
        self.new_correlation = self.new_correlation.fillna(1).round(2)
        self.new_correlation.columns = self.new_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        self.new_correlation.index = self.new_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
赵杰's avatar
赵杰 committed
814 815
        self.proposal_fund = list(set(list(max_sharp_weights.keys())) - (set(list(max_sharp_weights.keys())) & set(
            list(self.portfolio_dict.keys()))))
李宗熹's avatar
李宗熹 committed
816

李宗熹's avatar
李宗熹 committed
817
        end4 = time.time()
赵杰's avatar
赵杰 committed
818
        print("模型计算一次时间:", end4 - start)
李宗熹's avatar
李宗熹 committed
819 820

    def return_compare(self):
李宗熹's avatar
李宗熹 committed
821
        index_data = get_index_daily(self.index_id, self.start_date)
李宗熹's avatar
李宗熹 committed
822
        index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
823 824
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1
        # origin_fund_return = origin_portfolio.iloc[:, :] / origin_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
825
        propose_fund_return = self.propose_portfolio.iloc[:, :] / self.propose_portfolio.iloc[0, :] - 1
李宗熹's avatar
李宗熹 committed
826 827 828
        propose_fund_return['return'] = propose_fund_return.T.iloc[:, :].apply(lambda x: np.dot(self.new_weights, x))
        return index_return, propose_fund_return

赵杰's avatar
赵杰 committed
829 830 831
    def old_evaluation(self, group_name, group_result, data_adaptor):
        start_year = data_adaptor.start_date.year
        start_month = data_adaptor.start_date.month
赵杰's avatar
赵杰 committed
832 833 834
        current_year = data_adaptor.end_date.year
        current_month = data_adaptor.end_date.month
        current_day = data_adaptor.end_date.day
李宗熹's avatar
李宗熹 committed
835 836
        past_month = (current_year - start_year) * 12 + current_month - start_month

赵杰's avatar
赵杰 committed
837
        # 投入成本(万元)
李宗熹's avatar
李宗熹 committed
838
        input_cost = round(group_result[group_name]["total_cost"] / 10000, 2)
赵杰's avatar
赵杰 committed
839
        # 整体盈利(万元)
李宗熹's avatar
李宗熹 committed
840
        total_profit = round(group_result[group_name]["cumulative_profit"] / 10000, 2)
赵杰's avatar
赵杰 committed
841 842
        # 整体表现 回撤能力
        fund_rank_data = fund_rank[fund_rank["fund_id"].isin(self.portfolio)]
赵杰's avatar
赵杰 committed
843 844
        z_score = (group_result[group_name]["cumulative_return"] - 1)*100
        drawdown_rank = group_result[group_name]["max_drawdown"][0]*100
赵杰's avatar
赵杰 committed
845
        return_rank_df = fund_rank_data["annual_return_rank"]
赵杰's avatar
赵杰 committed
846 847 848 849 850 851 852 853
        z_score_level = np.select([z_score > 20,
                                   15 <= z_score < 20,
                                   10 <= z_score < 15,
                                   z_score < 10], [0, 1, 2, 3]).item()
        drawdown_level = np.select([drawdown_rank <= 5,
                                    5 <= drawdown_rank < 7,
                                    7 <= drawdown_rank < 10,
                                    drawdown_rank > 10], [0, 1, 2, 3]).item()
赵杰's avatar
赵杰 committed
854 855 856 857 858 859 860
        # 收益稳健
        fund_rank_re = fund_rank_data[fund_rank_data["annual_return_rank"] > 0.8]
        return_rank_evaluate = ""
        if len(fund_rank_re) > 0:
            num = len(fund_rank_re)
            fund_id_rank_list = list(fund_rank_re["fund_id"])
            for f_id in fund_id_rank_list:
李宗熹's avatar
李宗熹 committed
861 862
                name = data_adaptor.user_customer_order_df[data_adaptor.user_customer_order_df["fund_id"] == f_id][
                    "fund_name"].values[0]
赵杰's avatar
赵杰 committed
863
                return_rank_evaluate = return_rank_evaluate + name + "、"
李宗熹's avatar
李宗熹 committed
864
            return_rank_evaluate = return_rank_evaluate[:-1] + "等" + str(num) + "只产品稳健,对组合的收益率贡献明显,"
赵杰's avatar
赵杰 committed
865 866 867

        # 正收益基金数量
        group_hold_data = pd.DataFrame(group_result[group_name]["group_hoding_info"])
赵杰's avatar
赵杰 committed
868
        profit_positive_num = len(group_hold_data[group_hold_data["profit"] > 0]["fund_name"].unique())
赵杰's avatar
赵杰 committed
869
        if profit_positive_num > 0:
870
            profit_positive_evaluate = str(profit_positive_num) + "只基金取得正收益,"
赵杰's avatar
赵杰 committed
871 872 873 874 875 876 877 878 879 880 881 882 883
        else:
            profit_positive_evaluate = ""

        # 综合得分较低数量
        abandon_num = len(self.abandon_fund_score)
        abandon_evaluate = str(abandon_num) + "只基金综合得分较低建议更换,"

        # 成立时间短
        if len(self.no_data_fund) > 0:
            no_data_fund_evaluate = str(len(self.no_data_fund)) + "只基金因为成立时间较短,暂不做评价;"
        else:
            no_data_fund_evaluate = ";"

李宗熹's avatar
李宗熹 committed
884 885
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
赵杰's avatar
赵杰 committed
886 887
        strategy_list = group_order_df["substrategy"]
        uniqe_strategy = list(strategy_list.unique())
888
        uniqe_strategy_name = [get_substrategy_name(x) + "、" for x in uniqe_strategy]
赵杰's avatar
赵杰 committed
889 890 891
        # 覆盖的基金名称
        strategy_name_evaluate = "".join(uniqe_strategy_name)[:-1]

pengxiong's avatar
pengxiong committed
892
        try:
赵杰's avatar
赵杰 committed
893
            if len(uniqe_strategy) > 3:
pengxiong's avatar
pengxiong committed
894 895 896
                strategy_distribution_evaluate = "策略上有一定分散"
            else:
                strategy_distribution_evaluate = "策略分散程度不高"
赵杰's avatar
赵杰 committed
897
        except:
赵杰's avatar
赵杰 committed
898 899 900
            strategy_distribution_evaluate = "策略分散程度不高"
        # 相关性
        if len(self.abandon_fund_corr) > 0:
李宗熹's avatar
李宗熹 committed
901 902
            fund_corr_name = [str(group_order_df[group_order_df["fund_id"] == f_id]["fund_name"].values[0]) + "和" for
                              f_id in self.abandon_fund_corr]
赵杰's avatar
赵杰 committed
903 904 905 906
            fund_corr_evaluate = "".join(fund_corr_name)[:-1] + "相关性较高,建议调整组合配比;"
        else:
            fund_corr_evaluate = ";"

李宗熹's avatar
李宗熹 committed
907
        num_fund = len(self.portfolio)
赵杰's avatar
赵杰 committed
908
        evaluate_enum = [["优秀", "良好", "一般", "较差"],
李宗熹's avatar
李宗熹 committed
909
                         ["优秀", "良好", "合格", "较差"]]
李宗熹's avatar
李宗熹 committed
910

赵杰's avatar
赵杰 committed
911 912
        if data_adaptor.total_result_data["cumulative_profit"] < 0 and z_score_level == 0:
            z_score_level = 2
赵杰's avatar
赵杰 committed
913

赵杰's avatar
赵杰 committed
914 915
        z_score_evaluate = evaluate_enum[0][z_score_level]
        drawdown_evaluate = evaluate_enum[1][drawdown_level]
赵杰's avatar
赵杰 committed
916 917 918 919 920 921 922 923 924
        if z_score_evaluate in ["优秀", "良好"]:
            z_score_evaluate = """<span class="self_description_red">{}</span>""".format(z_score_evaluate)
        else:
            z_score_evaluate = """<span class="self_description_green">{}</span>""".format(z_score_evaluate)

        if drawdown_evaluate in ["优秀", "良好"]:
            drawdown_evaluate = """<span class="self_description_red">{}</span>""".format(drawdown_evaluate)
        else:
            drawdown_evaluate = """<span class="self_description_green">{}</span>""".format(drawdown_evaluate)
赵杰's avatar
赵杰 committed
925 926 927 928 929 930 931 932 933 934 935 936

        sentence = {
            1: "1、组合构建于{}年{}月,至今已运行{}个月。投入成本为{}万元,截止{}年{}月{}日,整体盈利{}万元,整体表现{},回撤控制能力{};\n",
            2: "2、组合共持有{}只基金,{}{}{}{}\n",
            3: "3、策略角度来看,组合涵盖了{}, {}{}\n"
        }

        data = {1: [start_year, start_month, past_month, input_cost, current_year, current_month, current_day,
                    total_profit, z_score_evaluate, drawdown_evaluate],
                2: [num_fund, return_rank_evaluate, profit_positive_evaluate, abandon_evaluate, no_data_fund_evaluate],
                3: [strategy_name_evaluate, strategy_distribution_evaluate, fund_corr_evaluate]
                }
赵杰's avatar
赵杰 committed
937
        ret = []
赵杰's avatar
赵杰 committed
938
        for k, v in data.items():
赵杰's avatar
赵杰 committed
939
            ret.append(sentence[k].format(*data[k]).replace(",;", ";"))
赵杰's avatar
赵杰 committed
940 941 942 943

        # 旧组合累积收益df
        group_result_data = group_result[group_name]
        hold_info = group_result_data["group_hoding_info"]
赵杰's avatar
赵杰 committed
944
        hold_info_df = pd.DataFrame(hold_info)
赵杰's avatar
赵杰 committed
945 946 947
        group_order_df = data_adaptor.user_customer_order_df[
            data_adaptor.user_customer_order_df["folio_name"] == group_name]
        group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())
赵杰's avatar
赵杰 committed
948 949

        freq_max = group_order_df["freq"].max()
赵杰's avatar
赵杰 committed
950 951
        if math.isnan(freq_max):
            freq_max = 1
赵杰's avatar
赵杰 committed
952 953
        n_freq = freq_days(int(freq_max))

赵杰's avatar
赵杰 committed
954 955 956
        old_return_df = group_result_data["return_df"]
        old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"] - 1

赵杰's avatar
赵杰 committed
957 958 959 960 961 962 963 964
        # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
        total_asset = round(hold_info_df["market_values"].sum(), 2)
        old_return = group_result_data["cumulative_return"]
        old_return_ratio_year = group_result_data["return_ratio_year"]
        old_volatility = group_result_data["volatility"]
        old_max_drawdown = group_result_data["max_drawdown"]
        old_sharpe = group_result_data["sharpe"]

赵杰's avatar
赵杰 committed
965
        # 指数收益
赵杰's avatar
赵杰 committed
966 967
        # index_data = get_index_daily(self.index_id, self.start_date)
        # index_data = pd.merge(index_data, self.propose_portfolio, how='inner', left_index=True, right_index=True)
赵杰's avatar
赵杰 committed
968
        index_data = data_adaptor.fund_cnav_total[["index"]].fillna(method="ffill")
赵杰's avatar
赵杰 committed
969
        index_data = index_data[index_data.index >= pd.to_datetime(data_adaptor.start_date)]
赵杰's avatar
赵杰 committed
970 971 972 973
        index_return = index_data.iloc[:, :] / index_data.iloc[0, :] - 1

        # 指数收益
        index_return = index_return[index_return.index >= group_order_start_date]
赵杰's avatar
赵杰 committed
974 975 976
        index_return["index"] = index_return["index"].astype('float')
        start_index_return = index_return["index"].values[0]
        index_return["new_index_return"] = (index_return["index"] - start_index_return) / (1 + start_index_return)
赵杰's avatar
赵杰 committed
977 978
        index_return_ratio = index_return["new_index_return"].values[-1]
        index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1],
赵杰's avatar
赵杰 committed
979 980
                                                index_return["new_index_return"], 250)
        index_volatility = volatility(index_return["new_index_return"] + 1, 250)
赵杰's avatar
赵杰 committed
981 982
        index_drawdown = max_drawdown(index_return["new_index_return"] + 1)
        index_sim = simple_return(index_return["new_index_return"]+1)
赵杰's avatar
赵杰 committed
983 984
        index_exc = excess_return(index_sim, BANK_RATE, 250)
        index_sharpe = sharpe_ratio(index_exc, index_sim, 250)
赵杰's avatar
赵杰 committed
985 986 987 988 989

        # 收益对比数据
        return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]],
                                     right_index=True,
                                     left_index=True)
赵杰's avatar
赵杰 committed
990 991 992 993 994
        start = return_compare_df.index.values[0]
        if start > pd.to_datetime(self.start_date):
            row = [0, 0]
            return_compare_df.loc[pd.to_datetime(self.start_date)] = row

赵杰's avatar
赵杰 committed
995
        return_compare_df["date"] = return_compare_df.index
赵杰's avatar
赵杰 committed
996
        return_compare_df.sort_values(by="date", inplace=True)
赵杰's avatar
赵杰 committed
997 998 999 1000
        return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
        return_compare_df.iloc[1:-1, :]["date"] = ""
        old_return_compare_result = {

赵杰's avatar
赵杰 committed
1001 1002
            "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
            "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
赵杰's avatar
赵杰 committed
1003 1004
            "xlabels": return_compare_df["date"].values
        }
赵杰's avatar
赵杰 committed
1005
        # 指标对比
赵杰's avatar
赵杰 committed
1006 1007 1008 1009 1010 1011 1012 1013 1014
        old_indicator = {"group_name": "现有持仓组合", "return_ratio": "%.2f" % round((old_return - 1) * 100, 2),
                         "return_ratio_year": "%.2f" % round(old_return_ratio_year * 100, 2),
                         "volatility": "%.2f" % round(old_volatility * 100, 2),
                         "max_drawdown": "%.2f" % round(old_max_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(old_sharpe, 2)}

        index_indicator = {"group_name": "中证500", "return_ratio": "%.2f" % round(index_return_ratio * 100, 2),
                           "return_ratio_year": "%.2f" % round(index_return_ratio_year * 100, 2),
                           "volatility": "%.2f" % round(index_volatility * 100, 2),
                           "max_drawdown": "%.2f" % round(index_drawdown[0] * 100, 2), "sharpe": "%.2f" % round(index_sharpe, 2)}
赵杰's avatar
赵杰 committed
1015
        old_indicator_compare = [old_indicator, index_indicator]
赵杰's avatar
赵杰 committed
1016

赵杰's avatar
赵杰 committed
1017
        return ret, old_return_compare_result, old_indicator_compare
李宗熹's avatar
李宗熹 committed
1018

1019
    def new_evaluation(self, group_name, group_result, data_adaptor):
李宗熹's avatar
李宗熹 committed
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        try:
            group_result_data = group_result[group_name]
            hold_info = group_result_data["group_hoding_info"]
            hold_info_df = pd.DataFrame(hold_info)
            group_order_df = data_adaptor.user_customer_order_df[
                data_adaptor.user_customer_order_df["folio_name"] == group_name]
            group_order_start_date = pd.to_datetime(group_order_df["confirm_share_date"].min())

            # 原组合总市值, 区间收益, 年化收益,	波动率,	最大回撤, 夏普比率
            total_asset = round(hold_info_df["market_values"].sum(), 2)
            old_return = group_result_data["cumulative_return"]
            old_return_ratio_year = group_result_data["return_ratio_year"]
            old_volatility = group_result_data["volatility"]
            old_max_drawdown = group_result_data["max_drawdown"]
            old_sharpe = group_result_data["sharpe"]

            # 建议基金数据
            index_return, propose_fund_return = self.return_compare()
赵杰's avatar
赵杰 committed
1038 1039 1040
            # propose_fund_id_list = list(propose_fund_return.columns)
            propose_fund_id_list = list(self.proposal_fund)
            # propose_fund_id_list.remove("return")
李宗熹's avatar
李宗熹 committed
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
            with TAMP_SQL(tamp_product_engine) as tamp_product:
                tamp_product_session = tamp_product.session
                sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
                cur = tamp_product_session.execute(sql_product)
                data = cur.fetchall()
                product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
            propose_fund_df = product_df[product_df["fund_id"].isin(propose_fund_id_list)]

            # 基金名称,策略分级
            propose_fund_id_name_list = [propose_fund_df[propose_fund_df["fund_id"] == fund_id]["fund_name"].values[0] for
                                         fund_id in propose_fund_id_list]
1052
            propose_fund_id_strategy_name_list = [dict_substrategy(propose_fund_df[propose_fund_df["fund_id"] == fund_id]["substrategy"].values[0]) for
李宗熹's avatar
李宗熹 committed
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                                         fund_id in propose_fund_id_list]
            propose_fund_asset = [round(self.new_weights[i] * total_asset, 2) for i in range(len(propose_fund_id_name_list))]

            propose_info = {propose_fund_id_strategy_name_list[i]:
                                {"fund_name": propose_fund_id_name_list[i],
                                 "substrategy": propose_fund_id_strategy_name_list[i],
                                 "asset": propose_fund_asset[i]}
                            for i in range(len(propose_fund_id_list))}
            # 调仓建议
            suggestions_result = {}
            old_hold_fund_name_list = list(hold_info_df["fund_name"])
            for hold in hold_info:
赵杰's avatar
赵杰 committed
1065
                suggestions = {}
李宗熹's avatar
李宗熹 committed
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
                if hold["fund_strategy_name"] not in suggestions_result.keys():
                    suggestions_result[hold["fund_strategy_name"]] = {}
                suggestions["fund_strategy_name"] = hold["fund_strategy_name"]
                suggestions["fund_name"] = hold["fund_name"]
                suggestions["before_optimization"] = hold["market_values"]
                suggestions["after_optimization"] = 0
                if suggestions["fund_strategy_name"] in propose_fund_id_strategy_name_list:
                    suggestions["after_optimization"] = 0
                suggestions_result[hold["fund_strategy_name"]][suggestions["fund_name"]] = suggestions

            for key, value in propose_info.items():
                if value["fund_name"] not in old_hold_fund_name_list:
                    suggestions = {}
                    if key not in suggestions_result.keys():
                        suggestions_result[key] = {}
                    suggestions["fund_strategy_name"] = value["substrategy"]
                    suggestions["fund_name"] = value["fund_name"]
                    suggestions["before_optimization"] = 0
                    suggestions["after_optimization"] = value["asset"]
                    suggestions_result[key][suggestions["fund_name"]] = suggestions
赵杰's avatar
赵杰 committed
1086 1087 1088
                else:
                    suggestions_result[key][value["fund_name"]]["after_optimization"] = value["asset"]

李宗熹's avatar
李宗熹 committed
1089 1090 1091 1092 1093 1094
            for key, value in suggestions_result.items():
                suggestions_result[key] = list(value.values())
            suggestions_result_asset = {"before": total_asset, "after": total_asset}

            # 旧组合累积收益df
            old_return_df = group_result_data["return_df"]
赵杰's avatar
赵杰 committed
1095
            # old_return_df["cum_return_ratio"] = old_return_df["cum_return_ratio"]
李宗熹's avatar
李宗熹 committed
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
            # 新组合累积收益df
            propose_fund_return_limit_data = propose_fund_return[propose_fund_return.index >= group_order_start_date]
            start_return = propose_fund_return_limit_data['return'].values[0]
            propose_fund_return_limit_data["new_return"] = (propose_fund_return_limit_data["return"] - start_return)/(1+start_return)

            # 新组合累积收益
            new_return_ratio = propose_fund_return_limit_data["new_return"].values[-1]
            # 新组合区间年化收益率
            freq_max = group_order_df["freq"].max()
            n_freq = freq_days(int(freq_max))
            new_return_ratio_year = annual_return(propose_fund_return_limit_data["new_return"].values[-1], propose_fund_return_limit_data, n_freq)

            # 新组合波动率
            new_volatility = volatility(propose_fund_return_limit_data["new_return"]+1, n_freq)

            # 新组合最大回撤
            new_drawdown = max_drawdown(propose_fund_return_limit_data["new_return"]+1)

            # 新组合夏普比率
            sim = simple_return(propose_fund_return_limit_data["new_return"]+1)
            exc = excess_return(sim, BANK_RATE, n_freq)
赵杰's avatar
赵杰 committed
1117 1118 1119 1120 1121 1122
            try:
                new_sharpe = sharpe_ratio(exc, sim, n_freq)
                if new_sharpe is None or math.isnan(new_sharpe):
                    new_sharpe = 0
            except:
                new_sharpe = 0
李宗熹's avatar
李宗熹 committed
1123 1124 1125

            # 指数收益
            index_return = index_return[index_return.index >= group_order_start_date]
1126 1127
            start_index_return = index_return[self.index_id].values[0]
            index_return["new_index_return"] = (index_return[self.index_id] - start_index_return) / (1 + start_index_return)
李宗熹's avatar
李宗熹 committed
1128 1129 1130 1131
            index_return_ratio = index_return["new_index_return"].values[-1]
            index_return_ratio_year = annual_return(index_return["new_index_return"].values[-1], index_return["new_index_return"], n_freq)
            index_volatility = volatility(index_return["new_index_return"]+1, n_freq)
            index_drawdown = max_drawdown(index_return["new_index_return"]+1)
赵杰's avatar
赵杰 committed
1132
            index_sim = simple_return(index_return["new_index_return"]+1)
李宗熹's avatar
李宗熹 committed
1133
            index_exc = excess_return(index_sim, BANK_RATE, n_freq)
赵杰's avatar
赵杰 committed
1134 1135 1136 1137 1138 1139
            try:
                index_sharpe = sharpe_ratio(index_exc, index_sim, n_freq)
                if index_sharpe is None or math.isnan(index_sharpe):
                    index_sharpe = 0.0
            except:
                index_sharpe = 0.0
李宗熹's avatar
李宗熹 committed
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

            # 收益对比数据
            return_compare_df = pd.merge(index_return[["new_index_return"]], old_return_df[["cum_return_ratio"]], right_index=True,
                     left_index=True)
            return_compare_df = pd.merge(return_compare_df, propose_fund_return_limit_data["new_return"], right_index=True,
                     left_index=True)
            return_compare_df["date"] = return_compare_df.index
            return_compare_df["date"] = return_compare_df["date"].apply(lambda x: x.strftime("%Y-%m-%d"))
            return_compare_df.iloc[1:-1,:]["date"] = ""
            return_compare_result = {
赵杰's avatar
赵杰 committed
1150 1151 1152
                "new_combination": {"name": "新组合", "data": return_compare_df["new_return"].values*100},
                "index": {"name": "中证500", "data": return_compare_df["new_index_return"].values*100},
                "origin_combination": {"name": "原组合", "data": return_compare_df["cum_return_ratio"].values*100},
李宗熹's avatar
李宗熹 committed
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
                "xlabels": return_compare_df["date"].values
            }

            # 指标对比
            old_indicator = {"group_name": "现有持仓组合", "return_ratio": round((old_return-1)*100, 2), "return_ratio_year": round(old_return_ratio_year*100,2),
                             "volatility": round(old_volatility*100, 2), "max_drawdown": round(old_max_drawdown[0]*100, 2), "sharpe": round(old_sharpe, 2)}
            new_indicator = {"group_name": "建议优化组合", "return_ratio": round(new_return_ratio*100, 2), "return_ratio_year": round(new_return_ratio_year*100, 2),
                             "volatility": round(new_volatility*100, 2), "max_drawdown": round(new_drawdown[0]*100, 2), "sharpe": round(new_sharpe, 2)}
            index_indicator = {"group_name": "中证500", "return_ratio": round(index_return_ratio*100, 2), "return_ratio_year": round(index_return_ratio_year*100, 2),
                             "volatility": round(index_volatility*100, 2), "max_drawdown": round(index_drawdown[0]*100, 2), "sharpe": round(index_sharpe, 2)}
            indicator_compare = [new_indicator, old_indicator, index_indicator]


            # 在保留{}的基础上,建议赎回{},并增配{}后,整体组合波动率大幅降低,最大回撤从{}降到不足{},年化收益率提升{}个点
            hold_fund = set(self.portfolio) - set(self.abandon_fund_score + self.abandon_fund_corr + self.no_data_fund)
1168
            hold_fund_name = [get_fund_name(x, self.portfolio_dict[x]).values[0][0] for x in hold_fund]
李宗熹's avatar
李宗熹 committed
1169
            abandon_fund = (self.abandon_fund_score + self.abandon_fund_corr)
1170
            abandon_fund_name = [get_fund_name(x, self.portfolio_dict[x]).values[0][0] for x in abandon_fund]
李宗熹's avatar
李宗熹 committed
1171 1172 1173 1174
            proposal_fund = self.proposal_fund
            proposal_fund_name = [get_fund_name(x).values[0][0] for x in proposal_fund]

            sentence = []
赵杰's avatar
赵杰 committed
1175
            if len(hold_fund) > 0:
李宗熹's avatar
李宗熹 committed
1176
                sentence.append("在保留" + "".join([i + "," for i in hold_fund_name]).rstrip(",") + "的基础上")
赵杰's avatar
赵杰 committed
1177
            if len(abandon_fund) > 0:
李宗熹's avatar
李宗熹 committed
1178
                sentence.append("建议赎回" + "".join([i + "," for i in abandon_fund_name]).rstrip(","))
赵杰's avatar
赵杰 committed
1179
            if len(proposal_fund) > 0:
李宗熹's avatar
李宗熹 committed
1180 1181 1182 1183 1184 1185 1186 1187 1188
                sentence.append("增配" + "".join([i + "," for i in proposal_fund_name]).rstrip(",") + "后")
            if new_volatility < old_volatility * 0.9:
                sentence.append("整体组合波动率大幅降低")
            if new_drawdown < old_max_drawdown:
                sentence.append("最大回撤从{:.2%}降到不足{:.2%}".format(old_max_drawdown[0], new_drawdown[0]))
            if new_return_ratio_year > old_return_ratio_year:
                sentence.append("年化收益率提升{:.2f}个点".format((new_return_ratio_year - old_return_ratio_year) * 100))

            whole_sentence = ",".join(sentence).lstrip(",") + "。"
1189
            whole_sentence = [whole_sentence]
李宗熹's avatar
李宗熹 committed
1190 1191 1192
            return suggestions_result, suggestions_result_asset, return_compare_result, indicator_compare, whole_sentence
        except Exception as e:
            repr(e)
李宗熹's avatar
李宗熹 committed
1193
            return None, None, None, None, None
李宗熹's avatar
李宗熹 committed
1194

1195
    def single_evaluation(self, fund_id, fund_id_type=2, objective=False):
李宗熹's avatar
李宗熹 committed
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        """
           1、该基金整体表现优秀/良好/一般,收益能力优秀/良好/合格/较差,回撤控制能力优秀/良好/合格/较差,风险收益比例较高/一般/较低;
           2、在收益方面,该基金年化收益能力高于/持平/低于同类基金平均水平,有x%区间跑赢大盘/指数,绝对收益能力优秀/一般;
           3、在风险方面,该基金抵御风险能力优秀/良好/一般,在同类基金中处于高/中/低等水平,最大回撤为x%,高于/持平/低于同类基金平均水平;
           4、该基金收益较好/较差的同时回撤较大/较小,也就是说,该基金在用较大/较小风险换取较大/较小收益,存在较高/较低风险;
           5、基金经理,投资年限5.23年,经验丰富;投资能力较强,生涯中共管理过X只基金,历任的X只基金平均业绩在同类中处于上游水平,其中x只排名在前x%;生涯年化回报率x%,同期大盘只有x%

           旧个基显示1-4,新个基显示1-5。

           旧个基如果是要保留的,显示好的评价。
                如果是要剔除的,显示坏的评价。

           新个基只显示好的评价。
        Args:
            fund_id:

        Returns:
        """
1214 1215 1216 1217 1218 1219
        if fund_id_type == 0:
            rank_df = tx_fund_rank
        else:
            rank_df = tx_fund_rank

        z_score = search_rank(rank_df, fund_id, metric='z_score')
李宗熹's avatar
李宗熹 committed
1220 1221 1222 1223
        total_level = np.select([z_score >= 80,
                                 70 <= z_score < 80,
                                 z_score < 70], [0, 1, 2]).item()

李宗熹's avatar
李宗熹 committed
1224
        index_return_monthly = get_index_monthly(self.index_id, self.start_date)
1225 1226 1227 1228
        t_type = self.portfolio_dict.get(fund_id, None)
        if t_type is not None:
            fund_id_type = t_type
        fund_nav = get_tamp_nav(fund_id, self.start_date, invest_type=fund_id_type)
李宗熹's avatar
李宗熹 committed
1229 1230 1231 1232 1233 1234
        fund_nav_monthly = fund_nav.groupby([fund_nav.index.year, fund_nav.index.month]).tail(1)
        fund_nav_monthly = rename_col(fund_nav_monthly, fund_id)
        fund_return_monthly = simple_return(fund_nav_monthly[fund_id].astype(float))
        index_return_monthly.index = index_return_monthly.index.strftime('%Y-%m')
        fund_return_monthly.index = fund_return_monthly.index.strftime('%Y-%m')
        compare = pd.merge(index_return_monthly, fund_return_monthly, how='inner', left_index=True, right_index=True)
李宗熹's avatar
李宗熹 committed
1235
        fund_win_rate = ((compare[fund_id] - compare['pct_chg']) > 0).sum() / compare[fund_id].count()
李宗熹's avatar
李宗熹 committed
1236

1237
        return_rank = search_rank(rank_df, fund_id, metric='annual_return_rank')
李宗熹's avatar
李宗熹 committed
1238 1239 1240 1241 1242 1243 1244
        return_level = np.select([return_rank >= 0.8,
                                  0.7 <= return_rank < 0.8,
                                  0.6 <= return_rank < 0.7,
                                  return_rank < 0.6], [0, 1, 2, 3]).item()
        return_bool = 1 if return_level > 2 else 0
        return_triple = return_level - 1 if return_level >= 2 else return_level

1245 1246
        drawdown_rank = search_rank(rank_df, fund_id, metric='max_drawdown_rank')
        drawdown_value = search_rank(rank_df, fund_id, metric='max_drawdown')
李宗熹's avatar
李宗熹 committed
1247 1248 1249 1250 1251 1252 1253
        drawdown_level = np.select([drawdown_rank >= 0.8,
                                    0.7 <= drawdown_rank < 0.8,
                                    0.6 <= drawdown_rank < 0.7,
                                    drawdown_rank < 0.6], [0, 1, 2, 3]).item()
        drawdown_bool = 1 if drawdown_level > 2 else 0
        drawdown_triple = drawdown_level - 1 if drawdown_level >= 2 else drawdown_level

1254
        sharp_rank = search_rank(rank_df, fund_id, metric='sharp_ratio_rank')
李宗熹's avatar
李宗熹 committed
1255 1256 1257 1258 1259
        sharp_level = np.select([sharp_rank >= 0.8,
                                 0.6 <= sharp_rank < 0.8,
                                 sharp_rank < 0.6], [0, 1, 2]).item()

        data = {1: [total_level, return_level, drawdown_level, sharp_level],
李宗熹's avatar
李宗熹 committed
1260
                2: [return_triple, format(fund_win_rate, '.2%'), return_bool],
李宗熹's avatar
李宗熹 committed
1261
                3: [drawdown_triple, drawdown_triple, format(drawdown_value, '.2%'), drawdown_triple],
李宗熹's avatar
李宗熹 committed
1262 1263
                4: [return_bool, drawdown_bool, drawdown_bool, return_bool, drawdown_bool]}

李宗熹's avatar
李宗熹 committed
1264
        if fund_id in self.abandon_fund_score:
李宗熹's avatar
李宗熹 committed
1265 1266 1267 1268 1269 1270 1271 1272
            data['remove'] = True
        elif fund_id in self.proposal_fund:
            data[5] = [1] * 7
            data['remove'] = False
        else:
            data['remove'] = False

        x = '30%'
李宗熹's avatar
李宗熹 committed
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        content = {
            # 第一个评价
            1: [["优秀", "良好", "一般"],
                ["优秀", "良好", "合格", "较差"],
                ["优秀", "良好", "合格", "较差"],
                ["高", "一般", "较低"]],
            # 第二个评价
            2: [["高于", "持平", "低于"],
                x,
                ["优秀", "一般"]],
            # 第三个评价
            3: [["优秀", "良好", "一般"],
                ["高", "中", "低"], x,
                ["高于", "持平", "低于"]],
            # 第四个评价
            4: [["较好", "较差"],
                ["较小", "较大"],
                ["较小", "较小"],
                ["较大", "较小"],
                ["较低", "较高"]],
            5: [["TO DO"]] * 7}
李宗熹's avatar
李宗熹 committed
1294 1295

        sentence = {
李宗熹's avatar
李宗熹 committed
1296
            1: "该基金整体表现%s,收益能力%s,回撤控制能力%s,风险收益比例%s;\n",
李宗熹's avatar
李宗熹 committed
1297
            2: "在收益方面,该基金年化收益能力%s同类基金平均水平,有%s区间跑赢指数,绝对收益能力%s;\n",
李宗熹's avatar
李宗熹 committed
1298 1299 1300
            3: "在风险方面,该基金抵御风险能力%s,在同类基金中处于%s等水平,最大回撤为%s,%s同类基金平均水平;\n",
            4: "该基金收益%s的同时回撤%s,也就是说,该基金在用%s风险换取%s收益,存在%s风险;\n",
            5: "基金经理,投资年限%s年,经验丰富;投资能力较强,生涯中共管理过%s只基金,历任的%s只基金平均业绩在同类中处于上游水平,其中%s只排名在前%s;生涯年化回报率%s,同期大盘只有%s;"}
李宗熹's avatar
李宗熹 committed
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

        remove = data["remove"]
        del data["remove"]

        # 不剔除,选择好的话术
        if not remove:
            evaluation = choose_good_evaluation(data)
        # 剔除,选择坏的话术
        else:
            evaluation = choose_bad_evaluation(data)

李宗熹's avatar
李宗熹 committed
1312
        ret = []
赵杰's avatar
赵杰 committed
1313
        fund_name = get_fund_name(fund_id, fund_id_type).values[0][0]
李宗熹's avatar
李宗熹 committed
1314

1315
        # 默认评价
赵杰's avatar
赵杰 committed
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        try:
            default_evaluation = pd.read_csv("./app/service/evaluation.csv", encoding='utf-8', names=['fund_id', 'fund_name', 'eval'])
            if default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0]:
                ret.append('1、' + default_evaluation[default_evaluation['fund_id'] == fund_id]['eval'].values[0])

                evaluation_dict = {'name': fund_name, 'data': ret}

                if objective:
                    if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
                        evaluation_dict['status'] = "换仓"
                    elif fund_id in self.portfolio:
                        evaluation_dict['status'] = "保留"
                else:
                    evaluation_dict['status'] = ""
                return evaluation_dict
        except Exception as e:
            pass
李宗熹's avatar
李宗熹 committed
1333

李宗熹's avatar
李宗熹 committed
1334
        i = 1
李宗熹's avatar
李宗熹 committed
1335
        for k, v in evaluation.items():
李宗熹's avatar
李宗熹 committed
1336
            single_sentence = str(i) + "、" + sentence[k] % translate_single(content, k, v)
李宗熹's avatar
李宗熹 committed
1337 1338
            ret.append(single_sentence)
            i += 1
李宗熹's avatar
李宗熹 committed
1339

李宗熹's avatar
李宗熹 committed
1340 1341
        evaluation_dict = {'name': fund_name, 'data': ret}

李宗熹's avatar
李宗熹 committed
1342
        if objective:
李宗熹's avatar
李宗熹 committed
1343 1344 1345 1346
            if fund_id in self.abandon_fund_score + self.abandon_fund_corr:
                evaluation_dict['status'] = "换仓"
            elif fund_id in self.portfolio:
                evaluation_dict['status'] = "保留"
李宗熹's avatar
李宗熹 committed
1347 1348
        else:
            evaluation_dict['status'] = ""
李宗熹's avatar
李宗熹 committed
1349
        return evaluation_dict
李宗熹's avatar
李宗熹 committed
1350

李宗熹's avatar
李宗熹 committed
1351
    def old_portfolio_evaluation(self, objective=False):
李宗熹's avatar
李宗熹 committed
1352 1353 1354 1355
        try:
            result = []
            for fund in self.portfolio:
                try:
1356
                    result.append(self.single_evaluation(fund, self.portfolio_dict.get(fund, 1), objective))
李宗熹's avatar
李宗熹 committed
1357 1358 1359 1360 1361 1362 1363
                except IndexError:
                    continue
            return result
        except Exception as e:
            repr(e)
            return None

李宗熹's avatar
李宗熹 committed
1364
    def propose_fund_evaluation(self, ):
李宗熹's avatar
李宗熹 committed
1365 1366
        try:
            result = []
1367
            for fund in self.propose_portfolio.columns:
李宗熹's avatar
李宗熹 committed
1368 1369 1370 1371
                result.append(self.single_evaluation(fund))
            return result
        except Exception as e:
            repr(e)
赵杰's avatar
赵杰 committed
1372
            # raise e
李宗熹's avatar
李宗熹 committed
1373
            return None
李宗熹's avatar
李宗熹 committed
1374

李宗熹's avatar
李宗熹 committed
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    def single_fund_radar(self):
        radar_data = []
        for fund in self.portfolio:
            try:
                radar_data.append(get_radar_data(fund))
            except IndexError:
                continue
        return radar_data

    def propose_fund_radar(self):
        radar_data = []
        for fund in self.proposal_fund:
            radar_data.append(get_radar_data(fund))
        return radar_data

赵杰's avatar
赵杰 committed
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
    def original_fund_index_compare(self, total_fund_cnav_df):
        compare_data = []
        for fund in self.portfolio:
            data_df = total_fund_cnav_df[[fund, "index"]].dropna()
            data_df[fund + "_return_ratio"] = (data_df[fund] / data_df[fund].iloc[0] - 1)*100
            data_df["index_return_ratio"] = (data_df["index"] / data_df["index"].iloc[0] - 1) * 100
            xlabels = ["" for i in range(len(data_df))]

            com_data = {
                "xlabels": xlabels,
                "index": {'name': '中证500', 'data': data_df["index_return_ratio"].values},
                "fund": {'name': fund, 'data': data_df[fund + "_return_ratio"].values},
            }
            compare_data.append(com_data)
        return compare_data
李宗熹's avatar
李宗熹 committed
1405

李宗熹's avatar
李宗熹 committed
1406
# portfolio = {'HF00002JJ2':2, 'HF00005DBQ':2, 'HF0000681Q':2, 'HF00006693':2, 'HF00006AZF':2, 'HF00006BGS':2}
李宗熹's avatar
李宗熹 committed
1407 1408 1409
# portfolio_diagnose = PortfolioDiagnose(client_type=1, portfolio=portfolio, invest_amount=10000000)
# portfolio_diagnose.optimize()
# if __name__ == '__main__':
李宗熹's avatar
李宗熹 committed
1410 1411 1412 1413 1414 1415 1416 1417
#     print(portfolio_diagnose.single_fund_radar())
#     print(portfolio_diagnose.propose_fund_radar())
#     print(portfolio_diagnose.old_portfolio_evaluation())
#     print('旧组合相关性:', portfolio_diagnose.old_correlation)
#     print('新组合相关性:', portfolio_diagnose.new_correlation)
#     print('旧组合个基评价:', portfolio_diagnose.old_portfolio_evaluation())
#     print('新组合个基评价:', portfolio_diagnose.propose_fund_evaluation())
#     print(portfolio_diagnose.single_evaluation(fund_id='HF0000681Q'))