data_service.py 17.9 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/18 19:12
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : data_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sqlalchemy import and_
赵杰's avatar
赵杰 committed
12 13
import tushare as ts
import datetime
14
from decimal import Decimal
李宗熹's avatar
李宗熹 committed
15
from app.api.engine import tamp_user_engine, tamp_product_engine, TAMP_SQL
16 17
# from app.model.tamp_user_models import CustomerOrder, CustomerInfo
# from app.model.tamp_product_models import FundInfo
赵杰's avatar
赵杰 committed
18 19 20 21 22


class UserCustomerDataAdaptor:
    user_id = ""
    customer_id = ""
23
    month_date = ""
赵杰's avatar
赵杰 committed
24
    end_date = ""
赵杰's avatar
赵杰 committed
25
    group_data = {}
赵杰's avatar
赵杰 committed
26
    trade_cal_date = None
27 28
    all_fund_distribution = {}
    all_fund_performance = {}
赵杰's avatar
赵杰 committed
29

30
    def __init__(self, user_id, customer_id, end_date=str(datetime.date.today()), index_id="IN0000007M"):
赵杰's avatar
赵杰 committed
31 32
        self.user_id = user_id
        self.customer_id = customer_id
33
        self.compare_index_id = index_id
赵杰's avatar
赵杰 committed
34 35
        p_end_date = pd.to_datetime(end_date).date()
        p_end_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1) - datetime.timedelta(days=1)
36
        self.end_date = pd.to_datetime(str(p_end_date))
李宗熹's avatar
李宗熹 committed
37
        # self.end_date = pd.to_datetime("2020-11-23")
38
        p_start_date = datetime.date(year=p_end_date.year, month=p_end_date.month, day=1)
39
        self.month_start_date = p_start_date
李宗熹's avatar
李宗熹 committed
40
        # self.month_start_date = pd.to_datetime("2020-11-16")
赵杰's avatar
赵杰 committed
41
        self.user_customer_order_df = self.get_user_customer_order_data()
42
        self.fund_nav_total, self.fund_cnav_total = self.get_customer_fund_nav_data()
43
        self.index_df = self.get_customer_index_nav_data()
44
        self.total_customer_order_cnav_df = self.total_combine_data()
赵杰's avatar
赵杰 committed
45 46 47 48 49 50 51 52 53 54 55 56 57
        self.group_operate()

    @staticmethod
    def get_trade_cal(start_date, end_date):
        ts.set_token('ac1f734f8a25651aa07319ca35b1b0c0854e361e306fe85d85e092bc')
        pro = ts.pro_api()
        if end_date is not None:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date, is_open='1')
        else:
            df = pro.trade_cal(exchange='SSE', start_date=start_date, is_open='1')
        df.drop(['exchange', 'is_open'], axis=1, inplace=True)
        df.rename(columns={'cal_date': 'end_date'}, inplace=True)
        df["datetime"] = df["end_date"].apply(lambda x: datetime.datetime.strptime(x, "%Y%m%d"))
58

赵杰's avatar
赵杰 committed
59
        return df
赵杰's avatar
赵杰 committed
60 61 62

    # 获取理财师下该用户所有订单列表
    def get_user_customer_order_data(self):
63 64
        # data1 = tamp_user_session.query(CustomerOrder)\
        #         #     .filter(user_id = self.user_id).all()
赵杰's avatar
赵杰 committed
65 66
        # data2 = tamp_user_session.query(t_customer_info).all()
        # data3 = tamp_product_session.query(t_fund_info).all()
李宗熹's avatar
李宗熹 committed
67 68 69 70 71 72 73 74 75
        with TAMP_SQL(tamp_user_engine) as tamp_user, TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_user_session = tamp_user.session
            tamp_product_session = tamp_product.session
            sql_user = """select f2.realname,f3.customer_name,fund_id,f1.order_type,f1.pay_date,f1.subscription_fee,f1.confirm_share_date,f1.confirm_share,f1.confirm_amount,f1.nav,f1.folio_name from customer_order f1, user_info f2,customer_info f3   where f2.id=f1.user_id and f3.id=f1.customer_id and f1.user_id='{}' and f1.customer_id='{}'""".format(self.user_id, self.customer_id)
            cur = tamp_user_session.execute(sql_user)
            data = cur.fetchall()
            order_df = pd.DataFrame(list(data), columns=['username', 'customer_name', 'fund_id', 'order_type', 'pay_date',
                                                         'subscription_fee', 'confirm_share_date', 'confirm_share',
                                                         'confirm_amount', 'nav', 'folio_name'])
赵杰's avatar
赵杰 committed
76

李宗熹's avatar
李宗熹 committed
77 78 79 80
            sql_product = "select distinct `id`, `fund_short_name`, `nav_frequency`, `substrategy` from `fund_info`"
            cur = tamp_product_session.execute(sql_product)
            data = cur.fetchall()
            product_df = pd.DataFrame(list(data), columns=['fund_id', 'fund_name', 'freq', 'substrategy'])
赵杰's avatar
赵杰 committed
81

李宗熹's avatar
李宗熹 committed
82 83 84
            user_customer_order_df = order_df.set_index('fund_id').join(product_df.set_index('fund_id')).reset_index()
            self.start_date = user_customer_order_df["confirm_share_date"].min()
            return user_customer_order_df
赵杰's avatar
赵杰 committed
85 86 87

    # 获取客户持有的基金净值数据
    def get_customer_fund_nav_data(self):
李宗熹's avatar
李宗熹 committed
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            now_date = datetime.datetime.now().strftime("%Y%m%d")
            trade_date_df = self.get_trade_cal("20000101", now_date)
            self.trade_cal_date = trade_date_df
            all_fund_nav = pd.DataFrame(index=trade_date_df["datetime"])
            all_fund_cnav = pd.DataFrame(index=trade_date_df["datetime"])

            for cur_fund_id in self.user_customer_order_df["fund_id"].unique():
                # 对应基金净值
                sql = """select distinct `price_date`, `nav`,`cumulative_nav` from `fund_nav` where `fund_id`='{}'  order by `price_date` ASC""".format(cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_nav_df = pd.DataFrame(list(data), columns=['price_date', 'nav', 'cnav'])

                # # 对应基金分红
                sql = """select distinct `distribute_date`, `distribution` from `fund_distribution` where `fund_id`='{}' and `distribute_type`='1' order by `distribute_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_distribution_df = pd.DataFrame(list(data), columns=['price_date', 'distribution'])
                self.all_fund_distribution[cur_fund_id] = cur_fund_distribution_df

                # 对应基金performance数据
                sql = """select distinct `price_date`, `ret_1w`, `ret_cum_1m`, `ret_cum_6m`, `ret_cum_1y`, `ret_cum_ytd`, `ret_cum_incep` from `fund_performance` where `fund_id`='{}' order by `price_date` ASC""".format(
                    cur_fund_id)
                cur = tamp_product_session.execute(sql)
                data = cur.fetchall()
                cur_fund_performance_df = pd.DataFrame(list(data),
                columns=['price_date', 'ret_1w', 'ret_cum_1m', 'ret_cum_6m', 'ret_cum_1y', 'ret_cum_ytd', 'ret_cum_incep'])
                self.all_fund_performance[cur_fund_id] = cur_fund_performance_df

                cur_fund_nav_df["price_date"] = pd.to_datetime(cur_fund_nav_df["price_date"])
                cur_fund_nav_df.set_index("price_date", inplace=True)
                all_fund_nav[cur_fund_id] = cur_fund_nav_df["nav"]
                all_fund_cnav[cur_fund_id] = cur_fund_nav_df["cnav"]

            all_fund_nav = all_fund_nav[all_fund_nav.index <= self.end_date]
            all_fund_cnav = all_fund_cnav[all_fund_cnav.index <= self.end_date]
            return all_fund_nav, all_fund_cnav
128

李宗熹's avatar
李宗熹 committed
129 130 131 132 133
    # 获取客户对比指数净值数据
    def get_customer_index_nav_data(self, index_id="IN0000007M"):
        with TAMP_SQL(tamp_product_engine) as tamp_product:
            tamp_product_session = tamp_product.session
            sql = "select distinct price_date,close from fund_market_indexes where index_id='{}'  order by price_date ASC".format(index_id)
134 135
            cur = tamp_product_session.execute(sql)
            data = cur.fetchall()
李宗熹's avatar
李宗熹 committed
136 137 138 139 140
            index_df = pd.DataFrame(list(data), columns=['price_date', 'index'])
            index_df["price_date"] = pd.to_datetime(index_df["price_date"])
            index_df.set_index("price_date", inplace=True)
            self.fund_cnav_total["index"] = index_df["index"]
            self.index_df = index_df
141

李宗熹's avatar
李宗熹 committed
142
            return index_df
赵杰's avatar
赵杰 committed
143 144 145 146 147 148 149

    # 分组合计算
    def group_operate(self):
        for folio in self.user_customer_order_df["folio_name"].unique():
            cur_folio_order_df = self.user_customer_order_df[self.user_customer_order_df["folio_name"] == folio]
            fund_id_list = list(self.user_customer_order_df["fund_id"].unique())
            cur_folio_nav_df = self.fund_nav_total[fund_id_list]
150 151 152
            # fund_id_list.append("index")
            cur_folio_cnav_df = self.fund_cnav_total[fund_id_list]
            self.signal_folio_operate(folio, cur_folio_order_df, cur_folio_nav_df, cur_folio_cnav_df)
赵杰's avatar
赵杰 committed
153
            continue
赵杰's avatar
赵杰 committed
154

赵杰's avatar
赵杰 committed
155
    # 单个组合数据操作
156
    def signal_folio_operate(self, p_folio, p_order_df, p_nav_df, p_cnav_df):
赵杰's avatar
赵杰 committed
157 158
        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = row["nav"] - last_nav_data.values[0]
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
赵杰's avatar
赵杰 committed
186 187 188 189
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
            # # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            # if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
            #     last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
            #     # 判断上个净值日和当前确认日之中是否存在分红日
            #     """need add judge"""
            #
            #     if len(last_nav_data) < 1:
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
            #     else:
            #         diff_nav = row["nav"] - last_nav_data.values[0]
            #         cur_cnav = last_cnav_data.values[0] + diff_nav
            #         cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

            if cur_fund_id+"_amount" not in cnav_df:
205 206
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
207
                cnav_df[cur_fund_id + "_profit"] = profit
208 209 210 211
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
212 213 214
                cnav_df[cur_fund_id+"_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0
赵杰's avatar
赵杰 committed
215 216 217

            # buy
            if row['order_type'] == 1:
218 219
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
赵杰's avatar
赵杰 committed
220 221
            # sell
            elif row['order_type'] == 2:
222 223
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]
赵杰's avatar
赵杰 committed
224

225 226 227 228 229 230 231 232 233 234
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_profit"] * cnav_df[cur_fund_id + "_share"]
            # cnav_df[cur_fund_id + "_earn"] = cnav_df[cur_fund_id + "_earn"].apply(lambda x: float(x))
            # cnav_df[cur_fund_id + "_cum_earn"] = cnav_df[cur_fund_id + "_earn"].cumsum()

        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"] + cnav_df[p_fund_id_ + "_amount"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
235 236
        self.group_data[p_folio] = {"result_cnav_data": cnav_df, "order_df": p_order_df}
        return cnav_df
赵杰's avatar
赵杰 committed
237

238
    # 所有的数据操作
239
    def total_combine_data(self):
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

        p_order_df = self.user_customer_order_df.copy()
        p_nav_df = self.fund_nav_total.copy()
        p_cnav_df = self.fund_cnav_total.copy()

        start_date = pd.to_datetime(p_order_df["confirm_share_date"].min())
        cnav_df = p_cnav_df[p_cnav_df.index >= start_date].copy()

        p_fund_id_list = list(p_order_df["fund_id"].unique())
        for p_fund_id in p_fund_id_list:
            order_min_date = p_order_df[p_order_df["fund_id"] == p_fund_id]["confirm_share_date"].min()
            if pd.to_datetime(order_min_date) > start_date:
                cnav_df.loc[:order_min_date - datetime.timedelta(days=1), p_fund_id] = np.nan

        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])

            # 根据确认净值日查看是否含有累积净值的数据,如果没有按照前后差值推算当天累积净值
            if pd.isnull(cnav_df.loc[confirm_share_date, cur_fund_id]):
                last_nav_data = p_nav_df[p_nav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                last_cnav_data = p_cnav_df[p_cnav_df.index < confirm_share_date][cur_fund_id].dropna().tail(1)
                # 判断上个净值日和当前确认日之中是否存在分红日
                """need add judge"""

                if len(last_nav_data) < 1:
                    cnav_df.loc[confirm_share_date, cur_fund_id] = row["nav"]
                else:
                    diff_nav = row["nav"] - last_nav_data.values[0]
                    cur_cnav = last_cnav_data.values[0] + diff_nav
                    cnav_df.loc[confirm_share_date, cur_fund_id] = cur_cnav

        cnav_df = cnav_df.dropna(axis=0, how="all").fillna(method='ffill')
        for index, row in p_order_df.iterrows():
            cur_fund_id = str(row["fund_id"])
            confirm_share_date = pd.to_datetime(row["confirm_share_date"])
            if cur_fund_id + "_amount" not in cnav_df:
277 278
                price = cnav_df[cur_fund_id].dropna()
                profit = price.diff().fillna(Decimal(0))
279
                cnav_df[cur_fund_id + "_profit"] = profit
280 281 282 283
                cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                profit_ratio = profit / cnav_df[cur_fund_id].dropna().shift(1)
                cnav_df[cur_fund_id + "_profit_ratio"] = profit_ratio
                cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
284 285 286 287
                cnav_df[cur_fund_id + "_amount"] = 0
                cnav_df[cur_fund_id + "_earn"] = 0
                cnav_df[cur_fund_id + "_share"] = 0

288 289 290 291 292 293 294
                # profit = cnav_df[cur_fund_id].dropna() - cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit"] = profit
                # cnav_df[cur_fund_id + "_profit"] = cnav_df[cur_fund_id + "_profit"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_profit_ratio"] = profit / cnav_df[cur_fund_id].dropna().shift(1)
                # cnav_df[cur_fund_id + "_profit_ratio"] = cnav_df[cur_fund_id + "_profit_ratio"].fillna(Decimal(0))
                # cnav_df[cur_fund_id + "_amount"] = 0
                # cnav_df[cur_fund_id + "_earn"] = 0
李宗熹's avatar
李宗熹 committed
295
                # cnav_df[cur_fund_id + "_cum_earn"] = 0
296 297
                # cnav_df[cur_fund_id + "_share"] = 0

298 299 300 301 302 303 304 305 306
            # buy
            if row['order_type'] == 1:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] += row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] += row["confirm_share"]
            # sell
            elif row['order_type'] == 2:
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_amount"] -= row["confirm_amount"]
                cnav_df.loc[confirm_share_date:, cur_fund_id + "_share"] -= row["confirm_share"]

307 308 309 310 311 312
        for p_fund_id_ in p_fund_id_list:
            cnav_df[p_fund_id_ + "_earn"] = (cnav_df[p_fund_id_ + "_profit"] * cnav_df[p_fund_id_ + "_share"]).apply(lambda x: float(x)).fillna(0)
            # cnav_df[p_fund_id_ + "_earn"] = cnav_df[p_fund_id_ + "_earn"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_cum_earn"] = cnav_df[p_fund_id_ + "_earn"].cumsum().fillna(0)
            # cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_cum_earn"] + cnav_df[p_fund_id_ + "_amount"].apply(lambda x: float(x))
            cnav_df[p_fund_id_ + "_net_amount"] = cnav_df[p_fund_id_ + "_share"] * cnav_df[p_fund_id_]
313
        return cnav_df