fund_rank.py 11.3 KB
Newer Older
李宗熹's avatar
李宗熹 committed
1 2
# import pymysql
from sqlalchemy import create_engine
李宗熹's avatar
李宗熹 committed
3

李宗熹's avatar
李宗熹 committed
4
db = create_engine(
李宗熹's avatar
李宗熹 committed
5 6 7 8
    'mysql+pymysql://tamp_fund:@imeng408@tamper.mysql.polardb.rds.aliyuncs.com:3306/tamp_fund?charset=utf8mb4',
    pool_size=50,
    pool_recycle=3600,
    pool_pre_ping=True)
李宗熹's avatar
李宗熹 committed
9 10
con = db.connect()

李宗熹's avatar
李宗熹 committed
11
import logging
李宗熹's avatar
李宗熹 committed
12

李宗熹's avatar
李宗熹 committed
13
logging.basicConfig(level=logging.INFO)
李宗熹's avatar
李宗熹 committed
14 15

from app.utils.week_evaluation import *
李宗熹's avatar
李宗熹 committed
16 17


李宗熹's avatar
李宗熹 committed
18 19 20 21 22 23
# con = pymysql.connect(host='tamper.mysql.polardb.rds.aliyuncs.com',
#                       user='tamp_fund',
#                       password='@imeng408',
#                       database='tamp_fund',
#                       charset='utf8',
#                       use_unicode='True')
李宗熹's avatar
李宗熹 committed
24 25


李宗熹's avatar
李宗熹 committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def get_nav(fund, start_date, rollback=False, invest_type='public'):
    """获取基金ID为fund, 起始日期为start_date, 终止日期为当前日期的基金净值表

    Args:
        fund[str]:基金ID
        start_date[date]:起始日期
        rollback[bool]:当起始日期不在净值公布日历中,是否往前取最近的净值公布日
        public[bool]:是否为公募

    Returns:df[DataFrame]: 索引为净值公布日, 列为复权净值的净值表; 查询失败则返回None

    """
    if invest_type == 'public':
        sql = "SELECT ts_code, end_date, adj_nav FROM public_fund_nav " \
              "WHERE ts_code='{}'".format(fund)
        df = pd.read_sql(sql, con).dropna(how='any')
        df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
    else:
        sql = "SELECT fund_id, price_date, cumulative_nav FROM fund_nav " \
              "WHERE fund_id='{}'".format(fund)
        df = pd.read_sql(sql, con).dropna(how='any')
        df.rename({'price_date': 'end_date', 'cumulative_nav': 'adj_nav'}, axis=1, inplace=True)
李宗熹's avatar
李宗熹 committed
48 49 50 51 52 53 54

    if df['adj_nav'].count() == 0:
        logging.log(logging.ERROR, "CAN NOT FIND {}".format(fund))
        return None

    df['end_date'] = pd.to_datetime(df['end_date'])

李宗熹's avatar
李宗熹 committed
55
    if rollback and df['end_date'].min() < start_date < df['end_date'].max():
李宗熹's avatar
李宗熹 committed
56
        while start_date not in list(df['end_date']):
李宗熹's avatar
李宗熹 committed
57
            start_date -= datetime.timedelta(days=1)
李宗熹's avatar
李宗熹 committed
58 59 60 61 62 63 64 65 66

    df = df[df['end_date'] >= start_date]
    df.drop_duplicates(subset='end_date', inplace=True, keep='first')
    df.set_index('end_date', inplace=True)
    df.sort_index(inplace=True, ascending=True)
    return df


def get_frequency(df):
李宗熹's avatar
李宗熹 committed
67 68 69 70 71 72 73 74
    """获取基金净值一年当中公布的频率

    Args:
        df[DataFrame]:以基金净值公布日期为索引的基金净值表

    Returns:[int]: 年公布频率;查询失败则返回ValueError

    """
李宗熹's avatar
李宗熹 committed
75
    index_series = df.index.to_series()
李宗熹's avatar
李宗熹 committed
76 77 78
    # freq_series = index_series - index_series.shift(1)
    freq_series = index_series.diff(1)
    logging.log(logging.DEBUG, freq_series.describe())
李宗熹's avatar
李宗熹 committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    f = freq_series.mode()[0].days
    if f in range(0, 3):
        return 250
    elif f in range(6, 9):
        return 52
    elif f in range(13, 18):
        return 24
    elif f in range(28, 33):
        return 12
    elif f in range(110, 133):
        return 3
    else:
        raise ValueError


李宗熹's avatar
李宗熹 committed
94 95
def get_trade_cal():
    """获取上交所交易日历表
李宗熹's avatar
李宗熹 committed
96

李宗熹's avatar
李宗熹 committed
97
    Returns:df[DataFrame]: 索引为交易日, 列为交易日的上交所交易日历表
李宗熹's avatar
李宗熹 committed
98

李宗熹's avatar
李宗熹 committed
99 100
    """
    sql = 'SELECT cal_date FROM stock_trade_cal WHERE is_open=1'
李宗熹's avatar
李宗熹 committed
101
    df = pd.read_sql(sql, con)
李宗熹's avatar
李宗熹 committed
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    df['end_date'] = pd.to_datetime(df['cal_date'])
    df.set_index('end_date', drop=False, inplace=True)
    return df


def get_manager(invest_type):
    """获取基金对应基金经理表

    Args:
        invest_type: 资产类型:公募, 私募等

    Returns:

    """
    if invest_type == 'public':
        sql = 'SELECT ts_code, name FROM public_fund_manager WHERE end_date IS NULL'
        df = pd.read_sql(sql, con)
    else:
        sql = 'SELECT fund_id, fund_manager_id FROM fund_manager_mapping'
        df = pd.read_sql(sql, con)
李宗熹's avatar
李宗熹 committed
122 123 124
    return df


李宗熹's avatar
李宗熹 committed
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
def get_fund_info(end_date, invest_type):
    """[summary]

    Args:
        end_date ([type]): [description]
        invest_type ([type]): [description]

    Returns:
        [type]: [description]
    """
    if invest_type == 'public':
        sql = "SELECT ts_code, fund_type, management FROM public_fund_basic " \
              "WHERE delist_date IS NULL AND (due_date IS NULL OR due_date>'{}')".format(end_date.strftime('%Y%m%d'))
        df = pd.read_sql(sql, con).dropna(how='all')
        manager_info = get_manager(invest_type)

        df.rename({'ts_code': 'fund_id'}, axis=1, inplace=True)
        df = pd.merge(df, manager_info, how="left", on='fund_id')
    else:
        sql = "SELECT id, substrategy FROM fund_info WHERE delete_tag=0 " \
              "AND substrategy!=-1"
        df = pd.read_sql(sql, con).dropna(how='all')

        df.rename({'id': 'fund_id'}, axis=1, inplace=True)
        manager_info = get_manager(invest_type)
        df = pd.merge(df, manager_info, how="inner", on='fund_id')
李宗熹's avatar
李宗熹 committed
151 152 153
    return df


李宗熹's avatar
李宗熹 committed
154
def resample(df, trading_cal, freq, simple_flag=True):
李宗熹's avatar
李宗熹 committed
155 156 157 158 159 160 161 162 163 164 165 166 167
    """对基金净值表进行粒度不同的重采样,并剔除不在交易日中的结果

    Args:
        df ([DataFrame]): [原始基金净值表]
        trading_cal ([DataFrame]): [上交所交易日表]
        freq ([int]): [重采样频率: 1:工作日,2:周, 3:月, 4:半月, 5:季度]

    Returns:
        [DataFrame]: [重采样后剔除不在交易日历中的净值表和交易日历以净值日期为索引的合表]
    """
    freq_dict = {250: 'B', 52: 'W-FRI', 12: 'M', 24: 'SM', 3: 'Q'}
    resample_freq = freq_dict[freq]
    # 按采样频率进行重采样并进行净值的前向填充
李宗熹's avatar
李宗熹 committed
168 169 170 171 172 173 174
    df = df.resample(rule=resample_freq, closed='right').ffill()

    # 计算年化指标时简化重采样过程
    if simple_flag and freq == 250:
        return pd.merge(df, trading_cal, how='inner', left_index=True, right_index=True)
    elif simple_flag and freq != 250:
        return df
李宗熹's avatar
李宗熹 committed
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    # 根据采样频率确定最大日期偏移量(保证偏移后的日期与重采样的日期在同一周,同一月,同一季度等)
    timeoffset_dict = {250: 1, 52: 5, 12: 30, 24: 15, 3: 120}
    timeoffsetmax = timeoffset_dict[freq]

    # Dataframe不允许直接修改index,新建一份index的复制并转为list
    new_index = list(df.index)
    # 遍历重采样后的日期
    for idx, date in enumerate(df.index):
        # 如果重采样后的日期不在交易日历中
        if date not in trading_cal['end_date']:
            # 对重采样后的日期进行偏移
            for time_offset in range(1, timeoffsetmax):
                # 如果偏移后的日期在交易日历中,保留偏移后的日期
                if date - datetime.timedelta(days=time_offset) in trading_cal['end_date']:
                    new_index[idx] = date - datetime.timedelta(days=time_offset)
                    # 任意一天满足立即退出循环
                    break

    # 更改净值表的日期索引为重采样后且在交易日内的日期
    df.index = pd.Series(new_index)
    return pd.merge(df, trading_cal, how='inner', left_index=True, right_index=True)


def z_score(annual_return_rank, downside_risk_rank, max_drawdown_rank, sharp_ratio_rank):
    return 25 * annual_return_rank + 25 * downside_risk_rank + 25 * max_drawdown_rank + 25 * sharp_ratio_rank


def cal_date(date, period_type, period):
    year, month, day = map(int, date.strftime('%Y-%m-%d').split('-'))
    if period_type == 'Y':
        cal_year = year - period
        return datetime.datetime(cal_year, month, day)
    elif period_type == 'm':
        cal_month = month - period
        if cal_month > 0:
            return datetime.datetime(year, cal_month, day)
        else:
            return datetime.datetime(year - 1, cal_month + 12, day)
    elif period_type == 'd':
        return date - datetime.timedelta(days=period)


def metric_rank(df):
李宗熹's avatar
李宗熹 committed
219
    for metric in ['annual_return', 'downside_risk', 'max_drawdown', 'sharp_ratio']:
李宗熹's avatar
李宗熹 committed
220 221 222 223
        if metric in ['downside_risk', 'max_drawdown']:
            ascending = False
        else:
            ascending = True
李宗熹's avatar
李宗熹 committed
224
        df['{}_rank'.format(metric)] = df.groupby(['substrategy'])[metric].rank(ascending=ascending, pct=True)
李宗熹's avatar
李宗熹 committed
225 226 227
    return df


李宗熹's avatar
李宗熹 committed
228 229 230 231 232
def fund_rank(start_date, end_date, invest_type='private'):
    fund_info = get_fund_info(end_date, invest_type=invest_type)

    group = fund_info.groupby('substrategy')
    grouped_fund = group['fund_id'].unique()
李宗熹's avatar
李宗熹 committed
233

李宗熹's avatar
李宗熹 committed
234
    trading_cal = get_trade_cal()
李宗熹's avatar
李宗熹 committed
235

李宗熹's avatar
李宗熹 committed
236 237
    metric_df = pd.DataFrame(columns=('fund_id', 'range_return', 'annual_return', 'max_drawdown', 'sharp_ratio',
                                      'volatility', 'sortino_ratio', 'downside_risk', 'substrategy'))
李宗熹's avatar
李宗熹 committed
238 239

    skipped_funds = []
李宗熹's avatar
李宗熹 committed
240 241
    for substrategy in grouped_fund.index:
        for fund in grouped_fund[substrategy]:
李宗熹's avatar
李宗熹 committed
242

李宗熹's avatar
李宗熹 committed
243
            df = get_nav(fund, start_date, rollback=False, invest_type=invest_type)
李宗熹's avatar
李宗熹 committed
244 245 246 247

            try:
                if df.index[-1] - df.index[0] < 0.6 * (end_date - start_date):
                    skipped_funds.append(fund)
李宗熹's avatar
李宗熹 committed
248 249
                    logging.log(logging.INFO, 'Skipped {}'.format(fund))
                    continue
李宗熹's avatar
李宗熹 committed
250 251
                n = get_frequency(df)
            except Exception as e:
李宗熹's avatar
李宗熹 committed
252
                # logging.log(logging.ERROR, repr(e))
李宗熹's avatar
李宗熹 committed
253 254 255 256
                logging.log(logging.INFO, 'Skipped {}'.format(fund))
                continue

            df = resample(df, trading_cal, n)
李宗熹's avatar
李宗熹 committed
257 258 259 260 261

            try:
                _ = get_frequency(df)
            except ValueError:
                continue
李宗熹's avatar
李宗熹 committed
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

            logging.log(logging.INFO, "Dealing with {}".format(fund))
            net_worth = df['adj_nav'].astype(float)

            end_df, begin_df = net_worth.values[-1], net_worth.values[0]

            sim_return = simple_return(net_worth)
            ex_return = excess_return(sim_return, bank_rate=0.015, n=n)
            drawdown = float(max_drawdown(net_worth)[0])
            shp_ratio = sharpe_ratio(ex_return, sim_return, n)
            rng_return = float(range_return(end_df, begin_df))
            ann_return = annual_return(rng_return, net_worth, n)
            vol = volatility(sim_return, n)
            down_risk = downside_risk(sim_return, bank_rate=0.015, n=n)
            sor_ratio = sortino_ratio(ex_return, down_risk, n)

李宗熹's avatar
李宗熹 committed
278 279
            manager = fund_info[fund_info['fund_id'] == fund]['fund_manager_id'].values
            # management = fund_info[fund_info['fund_id'] == fund]['management'].values
李宗熹's avatar
李宗熹 committed
280 281

            row = pd.Series([fund, rng_return, ann_return, drawdown, shp_ratio,
李宗熹's avatar
李宗熹 committed
282 283
                             vol, sor_ratio, down_risk, substrategy, manager],
                            index=['fund_id', 'range_return', 'annual_return', 'max_drawdown',
李宗熹's avatar
李宗熹 committed
284
                                   'sharp_ratio', 'volatility', 'sortino_ratio', 'downside_risk',
李宗熹's avatar
李宗熹 committed
285
                                   'substrategy', 'manager'])
李宗熹's avatar
李宗熹 committed
286
            metric_df = metric_df.append(row, ignore_index=True)
李宗熹's avatar
李宗熹 committed
287
    metric_df.set_index('fund_id', inplace=True)
李宗熹's avatar
李宗熹 committed
288 289 290 291 292 293 294 295 296 297 298 299

    df = metric_rank(metric_df)
    df['z_score'] = z_score(df['annual_return_rank'],
                            df['downside_risk_rank'],
                            df['max_drawdown_rank'],
                            df['sharp_ratio_rank'])
    return df


if __name__ == '__main__':
    end_date = datetime.datetime.now() - datetime.timedelta(days=1)
    start_date = cal_date(end_date, 'Y', 1)
李宗熹's avatar
李宗熹 committed
300 301 302 303
    fund_rank = fund_rank(start_date, end_date, False)
    # fund_rank.to_csv("fund_rank.csv", encoding='gbk')
    # df = pd.read_csv('fund_rank.csv')
    # df.to_sql("fund_rank", con, if_exists='replace')
李宗熹's avatar
李宗熹 committed
304
    con.close()