jinjia2html_v2.py 17.6 KB
Newer Older
pengxiong's avatar
pengxiong committed
1
import json
pengxiong's avatar
pengxiong committed
2
import sys
赵杰's avatar
赵杰 committed
3 4 5 6 7
import time
import uuid

from jinja2 import PackageLoader, Environment

pengxiong's avatar
pengxiong committed
8
from app.api.engine import work_dir, pdf_folder, template_folder, pdf_save_folder
pengxiong's avatar
pengxiong committed
9
from app.config.default_template_params import hold_default_template, diagnose_default_template
赵杰's avatar
赵杰 committed
10 11 12 13 14 15 16 17
from app.service.portfolio_diagnose import PortfolioDiagnose
from app.service.result_service_v2 import UserCustomerResultAdaptor
import numpy as np
from concurrent import futures
import os

# 准备数据
from app.utils.draw import draw_month_return_chart, draw_contribution_chart, draw_combination_chart, \
赵杰's avatar
赵杰 committed
18
    draw_old_combination_chart, draw_index_combination_chart
赵杰's avatar
赵杰 committed
19 20 21 22 23
from app.utils.html_to_pdf import html_to_pdf
from app.utils.radar_chart import gen_radar_chart


class DataIntegrate:
24
    def __init__(self, ifa_id='USER_INFO15917850824287', customer_id='6716613802534121472', pdf_name=str(uuid.uuid4()) + '.pdf', type=1):
赵杰's avatar
赵杰 committed
25 26
        self.user_customer = UserCustomerResultAdaptor(ifa_id, customer_id)
        self.customer_name = self.user_customer.customer_real_name
赵杰's avatar
赵杰 committed
27
        self.ifa_name = self.user_customer.ifa_real_name
pengxiong's avatar
pengxiong committed
28 29
        # self.pdf_name = self.ifa_name + "_" + self.customer_name + "_" + '.pdf'
        self.pdf_name = pdf_name
pengxiong's avatar
pengxiong committed
30 31
        # 1持仓报告2诊断报告
        self.type = type
赵杰's avatar
赵杰 committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
        # 全部数据
        self.df = self.user_customer.calculate_total_data()
        # 组合结果数据
        self.d = self.user_customer.calculate_group_result_data()

        self.all_folio_result = {}
        # 分组合拼接结果数据
        self.get_group_result()

        # 投资总览
        self.get_summarize()
        # 月度回报
        self.get_month_return()
        # 月度回报表格
        self.get_month_table_return()


    # 分组和计算个基点评以及新增基金等结果
    def get_group_result(self):
        for group_name, group_result in self.d.items():
            portfolio_diagnose = self.get_portfolio_diagnose(group_result["fund_id_list"], invest_amount=group_result["total_cost"])
赵杰's avatar
赵杰 committed
53 54 55 56 57 58 59 60 61
            cur_group_portfolio_result = {
                'new_correlation': [],
                'propose_fund_data_list': [],
                'suggestions_result': {},
                'suggestions_result_asset': {},
                'return_compare_pic': [],
                'indicator_compare': [],
                'new_group_evaluation': []
            }
赵杰's avatar
赵杰 committed
62 63 64 65 66 67 68 69 70 71 72 73 74

            # 旧持仓组合点评
            self.comments_on_position_portfolio(portfolio_diagnose, group_name, cur_group_portfolio_result)
            # 贡献分解
            self.contribution_deco(group_result, cur_group_portfolio_result)
            # 目标与业绩
            self.objectives_performance(group_result, cur_group_portfolio_result)
            # 个基点评
            self.single_fund_comment(portfolio_diagnose, cur_group_portfolio_result)
            # 旧收益比较
            self.get_old_compare_pic(cur_group_portfolio_result)
            # 旧相关性
            self.get_old_correlation(portfolio_diagnose, cur_group_portfolio_result)
pengxiong's avatar
pengxiong committed
75 76 77 78 79 80 81
            if self.type == 2:
                # 新增基金
                self.propose_fund(portfolio_diagnose, cur_group_portfolio_result)
                # 新收益比较
                self.get_transfer_suggestions(portfolio_diagnose, group_name, cur_group_portfolio_result)
                # 新相关性
                self.get_new_correlation(portfolio_diagnose, cur_group_portfolio_result)
赵杰's avatar
赵杰 committed
82 83 84 85

            self.all_folio_result[group_name] = cur_group_portfolio_result

    def get_portfolio_diagnose(self, portfolio, client_type=1, invest_amount=10000000):
赵杰's avatar
赵杰 committed
86
        portfolio_diagnose = PortfolioDiagnose(client_type=client_type, portfolio=portfolio, invest_amount=float(invest_amount),
赵杰's avatar
赵杰 committed
87
                                               start_date=self.user_customer.start_date)
赵杰's avatar
赵杰 committed
88 89 90 91 92 93
        portfolio_diagnose.optimize()
        return portfolio_diagnose

    # 全部数据综述结果
    def get_summarize(self):
        """投资总览."""
赵杰's avatar
赵杰 committed
94
        self.total_cost = int(self.df["total_cost"])  # 投资成本
赵杰's avatar
赵杰 committed
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        self.now_yield = round((self.df['cumulative_return']-1)*100, 2)     # 成立以来累计收益率
        self.now_annualised_return = round(self.df["return_ratio_year"] * 100, 2)  # 年化收益率
        self.index_yield = round((self.df["index_result"]["return_ratio"]-1)*100, 2)    # 指数收益率
        self.now_withdrawal = round(self.df["max_drawdown"][0]*100, 2)  # 最大回撤
        self.index_withdrawal = round(self.df["index_result"]["max_drawdown"][0]*100, 2)    # 指数最大回撤
        self.now_month_income = int(self.df["cur_month_profit"])  # 本月收益
        self.month_rise = round(self.df["cur_month_profit_ratio"] * 100, 2)  # 本月涨幅
        self.year_totoal_rate_of_return = round(self.df["cur_year_profit_ratio"] * 100, 2)  # 今年累计收益率
        self.now_year_income = int(self.df["cur_year_profit"])  # 今年累计收益
        self.final_balance = int(self.df["total_cost"] + self.df["cumulative_profit"])  # 期末资产
        self.total_profit = int(self.df["cumulative_profit"])  # 累计盈利

    def get_month_return(self):
        """月度回报."""
        """组合月度及累计回报率曲线图"""
        xlabels, product_list, cumulative = self.user_customer.get_month_return_chart()
        self.monthly_return_performance_pic = draw_month_return_chart(xlabels, product_list, cumulative)

    def get_month_table_return(self):
        """月度盈亏和期末资产"""
        self.monthly_table_return = self.df["month_return_data_dict"]

    # 旧组合持仓点评,贡献分解数据
    def comments_on_position_portfolio(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """旧持仓组合点评. 旧贡献分解数据"""
        cur_group_portfolio_result["old_evaluation"], cur_group_portfolio_result["old_return_compare_data"],\
        cur_group_portfolio_result["old_indicator_compare"] = portfolio_diagnose.old_evaluation(folio, self.d, self.user_customer)

    def contribution_deco(self, group_result, cur_group_portfolio_result):
        """贡献分解."""
        g_data = group_result["contribution_decomposition"]
        cur_group_portfolio_result["contribution_decomposition"] = draw_contribution_chart(g_data['xlabels'], g_data['product_list'], g_data['cumulative'])

    def single_fund_comment(self, portfolio_diagnose, cur_group_portfolio_result):
        """个基点评."""
        single_fund_data_list = []
        portfolio_evaluation = portfolio_diagnose.old_portfolio_evaluation()
赵杰's avatar
赵杰 committed
132
        index_compare_chart_data = portfolio_diagnose.original_fund_index_compare(self.user_customer.fund_cnav_total)
赵杰's avatar
赵杰 committed
133 134 135 136 137 138 139 140
        # with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
        #     res = executor.map(draw_index_combination_chart, index_compare_chart_data)
        # res = list(res)
        res = []
        for chart_data in index_compare_chart_data:
            r = draw_index_combination_chart(chart_data)
            res.append(r)

赵杰's avatar
赵杰 committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        for i in range(len(portfolio_evaluation)):
            single_fund_data_list.append({
                'fund_name': portfolio_evaluation[i]['name'],
                'status': portfolio_evaluation[i]['status'],
                'evaluation': portfolio_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["single_fund_data_list"] = single_fund_data_list

    def get_old_compare_pic(self, cur_group_portfolio_result):
        """旧收益比较"""
        cur_group_portfolio_result["old_return_compare_pic"] = draw_old_combination_chart(cur_group_portfolio_result["old_return_compare_data"]["xlabels"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["origin_combination"],
                                                                                          cur_group_portfolio_result["old_return_compare_data"]["index"])

    def get_transfer_suggestions(self, portfolio_diagnose, folio, cur_group_portfolio_result):
        """新收益比较,调仓建议"""
        cur_group_portfolio_result["suggestions_result"], cur_group_portfolio_result["suggestions_result_asset"], \
        cur_group_portfolio_result["return_compare_data"], \
        cur_group_portfolio_result["indicator_compare"], cur_group_portfolio_result["new_group_evaluation"] = portfolio_diagnose.new_evaluation(folio, self.d,
                                                                                                   self.user_customer)

        cur_group_portfolio_result["return_compare_pic"] = draw_combination_chart(cur_group_portfolio_result["return_compare_data"]["xlabels"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["new_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["origin_combination"],
                                                                                  cur_group_portfolio_result["return_compare_data"]["index"])

    def get_old_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """旧相关性分析."""
        old_correlation = portfolio_diagnose.old_correlation
        old_correlation_columns = old_correlation.columns.tolist()
        old_correlation_values = old_correlation.values.tolist()
        cur_group_portfolio_result["old_correlation"] = list(zip(range(1, len(old_correlation_columns)+1), old_correlation_columns, old_correlation_values))

    def get_new_correlation(self, portfolio_diagnose, cur_group_portfolio_result):
        """新相关性分析."""
        new_correlation = portfolio_diagnose.new_correlation
        new_correlation_columns = new_correlation.columns.tolist()
        new_correlation_values = new_correlation.values.tolist()
        cur_group_portfolio_result["new_correlation"] = list(zip(range(1, len(new_correlation_columns)+1), new_correlation_columns, new_correlation_values))

    def propose_fund(self, portfolio_diagnose, cur_group_portfolio_result):
        """新增基金"""
        # 优化组合建议1 -- 新增基金
        propose_fund_data_list = []
        propose_fund_evaluation = portfolio_diagnose.propose_fund_evaluation()
        propose_radar_chart_data = portfolio_diagnose.propose_fund_radar()
        with futures.ProcessPoolExecutor(os.cpu_count()) as executor:
            res = executor.map(gen_radar_chart, propose_radar_chart_data)
        res = list(res)
        for i in range(len(propose_fund_evaluation)):
            propose_fund_data_list.append({
                'fund_name': propose_fund_evaluation[i]['name'],
                'status': '增仓',
                'evaluation': propose_fund_evaluation[i]['data'],
                'radar_chart_path': res[i]
            })
        cur_group_portfolio_result["propose_fund_data_list"] = propose_fund_data_list

    def objectives_performance(self, group_result, cur_group_portfolio_result):
        """目标与业绩"""

赵杰's avatar
赵杰 committed
203 204 205 206 207 208 209 210 211 212 213
        cur_group_portfolio_result["totoal_rate_of_return"] = "%.2f" % round((group_result['cumulative_return']-1)*100, 2)       # 成立以来累计收益率
        cur_group_portfolio_result["annualised_return"] = "%.2f" % round(group_result["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["volatility"] = "%.2f" % round(group_result["volatility"]*100, 2)
        cur_group_portfolio_result["max_withdrawal"] = "%.2f" % round(group_result["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["sharpe_ratio"] = "%.2f" % round(group_result["sharpe"], 2)
        cur_group_portfolio_result["cost_of_investment"] = "%.2f" % round(group_result["total_cost"]/10000.0, 2)    # 投资成本
        cur_group_portfolio_result["index_section_return"] = "%.2f" % round((group_result["index_result"]["return_ratio"]-1)*100, 2)
        cur_group_portfolio_result["index_annualised_return"] = "%.2f" % round(group_result["index_result"]["return_ratio_year"]*100, 2)     # 年化收益率
        cur_group_portfolio_result["index_volatility"] = "%.2f" % round(group_result["index_result"]["volatility"]*100, 2)
        cur_group_portfolio_result["index_max_withdrawal"] = "%.2f" % round(group_result["index_result"]["max_drawdown"][0]*100, 2)
        cur_group_portfolio_result["index_sharpe_ratio"] = "%.2f" % round(group_result["index_result"]["sharpe"], 2)
赵杰's avatar
赵杰 committed
214 215 216 217 218

        cur_group_portfolio_result["group_nav_info"] = group_result["group_nav_info"]
        cur_group_portfolio_result["group_hoding_info"] = group_result["group_hoding_info"]
        cur_group_portfolio_result["group_hoding_info_total"] = group_result["group_hoding_info_total"]

pengxiong's avatar
pengxiong committed
219
    def get_template_data(self, default_template=None):
pengxiong's avatar
pengxiong committed
220
        """"""
pengxiong's avatar
pengxiong committed
221 222 223
        if self.type == 1:
            # 持仓报告数据
            data = {
赵杰's avatar
赵杰 committed
224 225
                # 全局数据
                'customer_name': self.customer_name,
pengxiong's avatar
pengxiong committed
226
                'year_month': self.user_customer.end_date.strftime("%Y-%m-%d"),
pengxiong's avatar
pengxiong committed
227
                'valueSex': self.user_customer.valueSex,
赵杰's avatar
赵杰 committed
228 229 230 231 232
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'latest_worth_day': self.user_customer.last_nav_date,
                'customer_level': '平衡型',
                # 综述数据
pengxiong's avatar
pengxiong committed
233 234
                'now_allocation_amount': '{:,}'.format(self.total_cost), 'now_yield': self.now_yield,
                'index_yield': self.index_yield,
赵杰's avatar
赵杰 committed
235
                'now_annualised_return': self.now_annualised_return,
pengxiong's avatar
pengxiong committed
236 237 238 239
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal,
                'expected_withdrawal': 20,
                'now_year_income': '{:,}'.format(self.now_year_income),
                'now_month_income': '{:,}'.format(self.now_month_income),
赵杰's avatar
赵杰 committed
240
                'final_balance': '{:,}'.format(self.final_balance), 'total_profit': '{:,}'.format(self.total_profit),
赵杰's avatar
赵杰 committed
241 242
                'total_profit_temp': self.total_profit,
                'now_year_income_temp': self.now_year_income, 'now_month_income_temp': self.now_month_income,
赵杰's avatar
赵杰 committed
243 244 245 246 247 248 249 250

                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'monthly_table_return': self.monthly_table_return,

                # 组合数据
                'all_folio_result': self.all_folio_result,

pengxiong's avatar
pengxiong committed
251
            }
pengxiong's avatar
pengxiong committed
252 253 254 255
            if default_template:
                self.data = {**default_template, **data}
            else:
                self.data = {**hold_default_template, **data}
pengxiong's avatar
pengxiong committed
256 257 258 259 260
        elif self.type == 2:
            # 诊断报告数据
            data = {
                # 全局数据
                'customer_name': self.customer_name,
pengxiong's avatar
pengxiong committed
261 262
                'year_month': self.user_customer.month_start_date.strftime("%Y-%m-%d"),
                'valueSex': self.user_customer.valueSex,
pengxiong's avatar
pengxiong committed
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                'month': self.user_customer.month_start_date.strftime("%m"),
                'start_date': self.user_customer.start_date.strftime("%Y-%m-%d"),
                'latest_worth_day': self.user_customer.last_nav_date,
                'customer_level': '平衡型',
                # 综述数据
                'now_allocation_amount': '{:,}'.format(self.total_cost), 'now_yield': self.now_yield,
                'index_yield': self.index_yield,
                'now_annualised_return': self.now_annualised_return,
                'now_withdrawal': self.now_withdrawal, 'index_withdrawal': self.index_withdrawal,
                'expected_withdrawal': 20,
                'now_year_income': '{:,}'.format(self.now_year_income),
                'now_month_income': '{:,}'.format(self.now_month_income),
                'final_balance': '{:,}'.format(self.final_balance), 'total_profit': '{:,}'.format(self.total_profit),
                'total_profit_temp': self.total_profit,
                'now_year_income_temp': self.now_year_income, 'now_month_income_temp': self.now_month_income,
赵杰's avatar
赵杰 committed
278

pengxiong's avatar
pengxiong committed
279 280 281
                'monthly_return_performance_pic': self.monthly_return_performance_pic,
                'month_rise': self.month_rise, 'year_totoal_rate_of_return': self.year_totoal_rate_of_return,
                'monthly_table_return': self.monthly_table_return,
赵杰's avatar
赵杰 committed
282

pengxiong's avatar
pengxiong committed
283 284 285
                # 组合数据
                'all_folio_result': self.all_folio_result,
            }
pengxiong's avatar
pengxiong committed
286 287 288 289
            if default_template:
                self.data = {**default_template, **data}
            else:
                self.data = {**hold_default_template, **data}
pengxiong's avatar
pengxiong committed
290 291
        return self.data

pengxiong's avatar
pengxiong committed
292
    def render_data(self, data=None):
pengxiong's avatar
pengxiong committed
293
        # 全部数据
pengxiong's avatar
pengxiong committed
294 295
        if data:
            self.data = data
赵杰's avatar
赵杰 committed
296 297 298 299
        # 开始渲染html模板
        env = Environment(loader=PackageLoader('app', 'templates'))  # 创建一个包加载器对象
        # template = env.get_template('monthReport.html')  # 获取一个模板文件
        template = env.get_template('/v2/monthReportV2.1.html')  # 获取一个模板文件
pengxiong's avatar
pengxiong committed
300
        monthReport_html = template.render(self.data).replace('None', 'none')  # 渲染
赵杰's avatar
赵杰 committed
301
        # 保存 monthReport_html
pengxiong's avatar
pengxiong committed
302 303 304
        # save_file = "app/html/monthReport.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
赵杰's avatar
赵杰 committed
305 306 307 308

        # save_file = "app/html/v2/monthReportV2.html"
        # with open(save_file, 'w', encoding="utf-8") as f:
        #     f.write(monthReport_html)
pengxiong's avatar
pengxiong committed
309
        html_to_pdf(monthReport_html, pdf_save_folder + self.pdf_name)
赵杰's avatar
赵杰 committed
310 311 312 313


if __name__ == '__main__':
    start = time.time()
pengxiong's avatar
pengxiong committed
314
    dt = DataIntegrate(ifa_id='USER_INFO15917850824287', customer_id='6716613802534121472', type=1)
pengxiong's avatar
pengxiong committed
315
    data = dt.get_template_data()
pengxiong's avatar
pengxiong committed
316
    dt.render_data()
赵杰's avatar
赵杰 committed
317
    print('耗时{}秒'.format(round(time.time()-start, 2)))