draw.py 18.3 KB
Newer Older
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
1 2 3 4 5 6 7 8
# -*- encoding: utf-8 -*-
# -----------------------------------------------------------------------------
# @File Name  : draw.py
# @Time       : 2020/11/19 上午10:51
# @Author     : X. Peng
# @Email      : acepengxiong@163.com
# @Software   : PyCharm
# -----------------------------------------------------------------------------
9 10 11 12
import base64
from urllib import parse

from io import BytesIO
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
13 14

import numpy as np
pengxiong's avatar
pengxiong committed
15
import matplotlib
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
16
import matplotlib.pyplot as plt
17
from matplotlib import ticker
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
18 19 20
from matplotlib.ticker import FuncFormatter
from matplotlib.font_manager import FontProperties

pengxiong's avatar
pengxiong committed
21 22

matplotlib.use('Agg')
23
# 中文字体初始化
24
plt.rcParams['font.sans-serif']=['Heiti TC']
25

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
26 27

def to_percent(temp, position):
28
    return '%.2f' % temp + '%'
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
29

30 31 32

def draw_month_return_chart(xlabels, product_list, cumulative):
    """月度回报表现图"""
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
33

34 35
    # plt.title('Scores by group and gender')
    # plt.ylabel('Scores')
36
    figsize = (24, 12)
37
    # 标签文字大小
38
    fontsize = 15
39
    # 初始化
40
    fig = plt.figure(figsize=figsize)
41
    ax1 = fig.add_subplot(111)
42
    ax2 = ax1.twinx()
43 44
    max_x_count = max([x['data'].size for x in product_list])
    loc = np.arange(max_x_count)  # the x locations for the groups
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
45
    width = 0.35  # the width of the bars: can also be len(x) sequence
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
46
    color_list = ['#B0B0B0', '#6C71AA', '#E1BC95', '#F9DBB8']
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
47

48 49 50
    # 坐标轴
    ax1.tick_params(labelsize=fontsize)
    ax2.tick_params(labelsize=fontsize)
51

52
    # 坐标轴颜色
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
53
    ax2.tick_params(axis='y', colors='#D40000')
54 55
    ax1.set_xticks(loc)
    ax1.set_xticklabels(xlabels)
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
56
    # ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
57
    ax2.yaxis.set_major_formatter(FuncFormatter(to_percent))
58 59 60 61
    # temp_rate = np.zeros(max_x_count)
    # for i in range(len(product_list)):
    #     temp_rate += product_list[i]['data']
    # max_rate = np.max(np.hstack((temp_rate, cumulative['data'])))
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
62
    # ax2.set_ylim(0, max_rate + 15)
63 64

    # 柱状图
65 66 67 68 69 70 71 72 73
    prod_legend = []
    for i in range(len(product_list)):
        ax = None
        bottom = np.zeros(max_x_count)
        if i == 0:
            ax = ax1.bar(loc, product_list[i]['data'], width, color=color_list[i], alpha=0.8)
        else:
            for j in range(i):
                bottom = bottom + product_list[j]['data']
74 75 76 77
            if i < len(color_list):
                ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, color=color_list[i], alpha=0.8)
            else:
                ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, alpha=0.8)
78 79
        for a, b in zip(range(len(xlabels)), product_list[0]['data']):
            if b > 0:
80
                ax1.text(a, b*1.08, '%.2f万' % b, ha='center', va='bottom', fontsize=fontsize)
81
            elif b < 0:
82
                ax1.text(a, b*0.92, '%.2f万' % b, ha='center', va='top', fontsize=fontsize)
83
        prod_legend.append(ax[0])
84 85 86
    ax1.legend(prod_legend, [prod['name'] for prod in product_list], loc='upper left', fontsize=fontsize)

    # 画折线图
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
87
    ax2.plot(loc, cumulative['data'], color='#D40000', marker='.', linewidth=3, label=cumulative['name'])
88 89
    # 添加数字标签
    for a, b in zip(range(len(xlabels)), cumulative['data']):
90
        ax2.text(a*1.05, b*1.05, '%.2f' % b + '%', ha='center', va='bottom', fontsize=fontsize, color='#D40000')
91 92
    ax2.legend(loc='upper center', fontsize=fontsize)

93 94
    # plt.show()
    imgdata = BytesIO()
李宗熹's avatar
李宗熹 committed
95
    fig.savefig(imgdata, format='png', bbox_inches='tight')
96 97 98
    imgdata.seek(0)  # rewind the data
    month_return_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
    return month_return_img
99 100 101 102 103 104 105


def draw_contribution_chart(xlabels, product_list, cumulative):
    """贡献分解图"""

    # plt.title('Scores by group and gender')
    # plt.ylabel('Scores')
李宗熹's avatar
李宗熹 committed
106
    figsize = (25, 12)
107 108 109 110
    # 标签文字大小
    fontsize = 22
    # 初始化
    fig = plt.figure(figsize=figsize)
赵杰's avatar
赵杰 committed
111
    ax1 = fig.add_subplot(111)
112 113 114 115
    ax2 = ax1.twiny()
    max_x_count = max([x['data'].size for x in product_list])
    loc = np.arange(max_x_count)  # the x locations for the groups
    width = 0.35  # the width of the bars: can also be len(x) sequence
赵杰's avatar
赵杰 committed
116 117 118
    color_list = ['#333333', '#928C8C', '#AFAFAF', '#D56666', '#DE7A7A',
                  '#ED9494', '#F4A9A9', '#FFC8C8', '#DEA27A', '#EFAF85',
                  '#FBBF98', '#FFD2B5', '#E1C277', '#EBCD85', '#FEDF96']
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
119

120
    # 坐标轴
121
    ax1.tick_params(labelsize=fontsize)
122
    ax1.set_xticks(loc)
123 124
    ax1.set_xticklabels(xlabels)
    ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
pengxiong's avatar
pengxiong committed
125
    ax1.grid(axis='y')
李宗熹's avatar
李宗熹 committed
126 127 128 129
    # temp_rate = np.zeros(max_x_count)
    # for i in range(len(product_list)):
    #     temp_rate += product_list[i]['data']
    # max_rate = np.max(np.hstack((temp_rate, cumulative['data'])))
130
    ax2.set_xticks([])
李宗熹's avatar
李宗熹 committed
131
    # ax2.set_ylim(0, max_rate + 10)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    # 堆叠柱状图
    prod_legend = []
    for i in range(len(product_list)):
        ax = None
        bottom = np.zeros(max_x_count)
        if i == 0:
            ax = ax1.bar(loc, product_list[i]['data'], width, color=color_list[i], alpha=0.8)
        else:
            for j in range(i):
                bottom = bottom + product_list[j]['data']
            if i < len(color_list):
                ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, color=color_list[i], alpha=0.8)
            else:
                ax = ax1.bar(loc, product_list[i]['data'], width, bottom=bottom, alpha=0.8)
        prod_legend.append(ax[0])
李宗熹's avatar
李宗熹 committed
148
    ax1.legend(prod_legend, [prod['name'] for prod in product_list], bbox_to_anchor=(0.9, -0.1), ncol=4, fontsize=fontsize)
149 150

    # 画折线图
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
151
    ax2.plot(loc, cumulative['data'], color='#B40A15', marker='', linewidth=3, label=cumulative['name'])
pengxiong's avatar
pengxiong committed
152 153
    # 添加数字标签
    for a, b in zip(range(len(xlabels)), cumulative['data']):
154
        ax2.text(a*1.1, b *1.05, '%.2f' % b + '%', ha='center', va='bottom', fontsize=fontsize, color='#B40A15')
155 156
    ax2.legend(loc='upper left', fontsize=fontsize)

李宗熹's avatar
李宗熹 committed
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    imgdata = BytesIO()
    fig.savefig(imgdata, format='png', bbox_inches='tight')
    imgdata.seek(0)  # rewind the data
    month_return_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
    return month_return_img

# def draw_contribution_chart(xlabels, product_list, cumulative):
#     """贡献分解图"""
#
#     # plt.title('Scores by group and gender')
#     # plt.ylabel('Scores')
#     figsize = (25, 12)
#     # 标签文字大小
#     fontsize = 22
#     # 初始化
#     fig = plt.figure(figsize=figsize)
#     ax1 = fig.add_subplot()
#     ax2 = ax1.twiny()
#     max_x_count = max([x['data'].size for x in product_list])
#     loc = np.arange(max_x_count)  # the x locations for the groups
#     width = 0.35  # the width of the bars: can also be len(x) sequence
#     color_list = ['#222A77', '#6C71AA', '#E1BC95', '#F9DBB8']
#
#     # 坐标轴
#     ax1.tick_params(labelsize=fontsize)
#     ax1.set_xticks(loc)
#     ax1.set_xticklabels(xlabels)
#     ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
#     # temp_rate = np.zeros(max_x_count)
#     # for i in range(len(product_list)):
#     #     temp_rate += product_list[i]['data']
#     # max_rate = np.max(np.hstack((temp_rate, cumulative['data'])))
#     ax2.set_xticks([])
#     # ax2.set_ylim(0, max_rate + 10)
#
#     # 堆叠柱状图
#     prod_legend = []
#     for i in range(len(product_list)):
#         ax = None
#         for j in range(len(product_list[i]['data'])):
#             product_list[i]['bottom'] = product_list[i].get('bottom', 0)
#             product_list[i]['bottom_neg'] = product_list[i].get('bottom_neg', 0)
#             if j > 0:
#                 product_list[i]['bottom'] += product_list[i].get('bottom', 0)
#                 product_list[i]['bottom_neg'] += product_list[i].get('bottom_neg', 0)
#             if i < len(color_list):
#                 for x in loc:
#                     if product_list[i]['data'][x] >= 0:
#                         ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom'], color=color_list[i], alpha=0.8)
#                     else:
#                         ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom_neg'],
#                                      color=color_list[i], alpha=0.8)
#             else:
#                 for x in loc:
#                     if product_list[i]['data'][x] >= 0:
#                         ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom'], alpha=0.8)
#                     else:
#                         ax = ax1.bar(x, product_list[i]['data'][x], width, bottom=product_list[i]['bottom_neg'], alpha=0.8)
#         prod_legend.append(ax[0])
#     # ax1.legend(prod_legend, [prod['name'] for prod in product_list], bbox_to_anchor=(0.9, -0.1), ncol=4, fontsize=fontsize)
#
#     # 画折线图
#     ax2.plot(loc, cumulative['data'], color='#C6A774', marker='', linewidth=3, label=cumulative['name'])
#     ax2.legend(loc='upper left', fontsize=fontsize)
#
#     plt.show()
#     # imgdata = BytesIO()
#     # fig.savefig(imgdata, format='png', bbox_inches='tight')
#     # imgdata.seek(0)  # rewind the data
#     # month_return_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
#     # return month_return_img
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264


def draw_comment_chart(xlabels, source_prod, target_prod):
    """个基点评图"""
    figsize = (20, 12)
    # 标签文字大小
    fontsize = 22
    # 初始化
    fig = plt.figure(figsize=figsize)
    ax1 = fig.add_subplot()
    ax2 = ax1.twiny()
    # ax = plt.gca()  # gca:get current axis得到当前轴
    # ax.spines['bottom'].set_position(('data', 0))  # data表示通过值来设置x轴的位置,将x轴绑定在y=0的位置
    product_list = [source_prod, target_prod]
    max_x_count = max([x['data'].size for x in product_list])
    loc = np.arange(max_x_count)  # the x locations for the groups

    # 坐标轴
    ax1.tick_params(labelsize=fontsize)
    ax2.tick_params(labelsize=fontsize)
    ax1.set_xticks(loc)
    ax1.set_xticklabels(xlabels)
    ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
    max_rate = np.max(np.hstack((source_prod['data'], target_prod['data'])))
    ax2.set_xticks([])

    # 个基折线图
    ax1.plot(loc, source_prod['data'], color='#C6A774', marker='', linewidth=3, label=source_prod['name'])
    ax1.legend(loc='upper left', fontsize=fontsize)

    # 指数折线图
    ax2.plot(loc, target_prod['data'], color='black', marker='', linewidth=3, label=target_prod['name'])
    ax2.legend(loc='upper center', fontsize=fontsize)

    plt.show()


pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
def draw_old_combination_chart(xlabels, origin_combination, index):
    """旧组合对比图"""
    figsize = (20, 12)
    # 标签文字大小
    fontsize = 22
    # 初始化
    fig = plt.figure(figsize=figsize)
    ax1 = fig.add_subplot(111)
    ax3 = ax1.twiny()
    # ax = plt.gca()  # gca:get current axis得到当前轴
    # ax.spines['bottom'].set_position(('data', 0))  # data表示通过值来设置x轴的位置,将x轴绑定在y=0的位置
    product_list = [origin_combination, index]
    max_x_count = max([x['data'].size for x in product_list])
    loc = np.arange(max_x_count)  # the x locations for the groups

    # 坐标轴
    ax1.tick_params(labelsize=fontsize)
    ax3.tick_params(labelsize=fontsize)
    ax1.set_xticks(loc)
    ax1.set_xticklabels(xlabels)
    ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
    ax3.set_xticks([])

    # 新组合折线图
    ax1.plot(loc, origin_combination['data'], color='#C6A774', marker='', linewidth=3, label=origin_combination['name'])
    ax1.legend(loc='upper left', fontsize=fontsize)

    # 指数折线图
    ax3.plot(loc, index['data'], color='black', marker='', linewidth=3, label=index['name'])
    ax3.legend(loc='upper right', fontsize=fontsize)

    # plt.show()
    imgdata = BytesIO()
    fig.savefig(imgdata, format='png', bbox_inches='tight')
    imgdata.seek(0)  # rewind the data
    return_compare_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
    return return_compare_img


304
def draw_combination_chart(xlabels, new_combination, origin_combination, index):
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
305
    """新组合对比图"""
306 307 308 309 310
    figsize = (20, 12)
    # 标签文字大小
    fontsize = 22
    # 初始化
    fig = plt.figure(figsize=figsize)
311
    ax1 = fig.add_subplot(111)
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    ax2 = ax1.twiny()
    ax3 = ax1.twiny()
    # ax = plt.gca()  # gca:get current axis得到当前轴
    # ax.spines['bottom'].set_position(('data', 0))  # data表示通过值来设置x轴的位置,将x轴绑定在y=0的位置
    product_list = [origin_combination, new_combination, index]
    max_x_count = max([x['data'].size for x in product_list])
    loc = np.arange(max_x_count)  # the x locations for the groups

    # 坐标轴
    ax1.tick_params(labelsize=fontsize)
    ax2.tick_params(labelsize=fontsize)
    ax3.tick_params(labelsize=fontsize)
    ax1.set_xticks(loc)
    ax1.set_xticklabels(xlabels)
    ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
    ax2.set_xticks([])
    ax3.set_xticks([])

    # 新组合折线图
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
331
    ax1.plot(loc, new_combination['data'], color='#C6A774', marker='', linewidth=3, label=new_combination['name'])
332 333 334
    ax1.legend(loc='upper left', fontsize=fontsize)

    # 原组合折线图
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
335
    ax2.plot(loc, origin_combination['data'], color='#222A77', marker='', linewidth=3, label=origin_combination['name'])
336 337 338 339 340
    ax2.legend(loc='upper center', fontsize=fontsize)

    # 指数折线图
    ax3.plot(loc, index['data'], color='black', marker='', linewidth=3, label=index['name'])
    ax3.legend(loc='upper right', fontsize=fontsize)
pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
341

342 343 344 345 346 347
    # plt.show()
    imgdata = BytesIO()
    fig.savefig(imgdata, format='png', bbox_inches='tight')
    imgdata.seek(0)  # rewind the data
    return_compare_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
    return return_compare_img
348 349


赵杰's avatar
赵杰 committed
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
def draw_index_combination_chart(compare_data):
    """基金和指数对比图"""
    xlabels, origin_combination, index = compare_data["xlabels"], compare_data["fund"], compare_data["index"]
    figsize = (20, 12)
    # 标签文字大小
    fontsize = 22
    # 初始化
    fig = plt.figure(figsize=figsize)
    ax1 = fig.add_subplot(111)
    ax3 = ax1.twiny()
    ax1.spines['top'].set_visible(False)
    ax1.spines['right'].set_visible(False)
    ax1.spines['bottom'].set_visible(False)
    ax1.spines['left'].set_visible(False)
    ax3.spines['top'].set_visible(False)
    ax3.spines['right'].set_visible(False)
    ax3.spines['bottom'].set_visible(False)
    ax3.spines['left'].set_visible(False)
    # ax = plt.gca()  # gca:get current axis得到当前轴
    # ax.spines['bottom'].set_position(('data', 0))  # data表示通过值来设置x轴的位置,将x轴绑定在y=0的位置
    product_list = [origin_combination, index]
    max_x_count = max([x['data'].size for x in product_list])
    loc = np.arange(max_x_count)  # the x locations for the groups

    # 坐标轴
pengxiong's avatar
2  
pengxiong committed
375 376 377 378
    # ax1.tick_params(labelsize=fontsize)
    # ax3.tick_params(labelsize=fontsize)
    # ax1.set_xticks(loc)
    # ax1.set_xticklabels(xlabels)
赵杰's avatar
赵杰 committed
379
    # ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
pengxiong's avatar
2  
pengxiong committed
380 381 382
    # ax1.set_yticks([])
    # ax3.set_yticks([])
    # ax3.set_xticks([])
赵杰's avatar
赵杰 committed
383 384 385 386 387
    ax1.axis('off')
    ax3.axis('off')

    # 基金折线图
    ax1.plot(loc, origin_combination['data'], color='#D40000', marker='', linewidth=3)
pengxiong's avatar
2  
pengxiong committed
388
    # ax1.legend()
赵杰's avatar
赵杰 committed
389 390 391

    # 指数折线图
    ax3.plot(loc, index['data'], color='grey', marker='', linewidth=3)
pengxiong's avatar
2  
pengxiong committed
392
    # ax3.legend()
赵杰's avatar
赵杰 committed
393 394 395 396 397 398 399 400

    # plt.show()
    imgdata = BytesIO()
    fig.savefig(imgdata, format='png', bbox_inches='tight')
    imgdata.seek(0)  # rewind the data
    return_compare_img = 'data:image/png;base64,' + base64.b64encode(imgdata.getvalue()).decode('utf-8')
    return return_compare_img

pengxiong@wealthgrow.cn's avatar
pengxiong@wealthgrow.cn committed
401
if __name__ == '__main__':
402 403 404 405 406
    # xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
    # product = {'name': '月度回报率', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    # contrast = {'name': '同比上涨', 'data': np.array([10, 50, 120, 100, 36, 0, 50, 120, 100, 36, 23, 98])}
    # draw_month_return_chart(xlabels, [product], contrast)

李宗熹's avatar
李宗熹 committed
407 408 409 410 411 412 413 414 415 416 417 418
    xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
    product1 = {'name': '塞亚成长1号', 'data': np.array([-10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product2 = {'name': '塞亚成长2号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product3 = {'name': '塞亚成长3号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product4 = {'name': '塞亚成长4号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product5 = {'name': '塞亚成长5号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product6 = {'name': '塞亚成长6号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product7 = {'name': '塞亚成长7号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product8 = {'name': '塞亚成长8号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    product_list = [product1, product2, product3, product4, product5, product6, product7, product8]
    cumulative = {'name': '总收益', 'data': np.array([10, 50, 120, 100, 36, 0, 50, 120, 100, 36, 23, 98])}
    draw_contribution_chart(xlabels, product_list, cumulative)
419 420 421 422 423 424

    # xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
    # source_prod = {'name': '远澜银杏1号', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    # target_prod = {'name': '上证指数', 'data': np.array([-10, 10, 5, 55, 24, 10, 20, 8, 10, 31, 40, 32])}
    # draw_comment_chart(xlabels, source_prod, target_prod)

李宗熹's avatar
李宗熹 committed
425 426 427 428 429
    # xlabels = ('2020-1', '2020-2', '2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8', '2020-9', '2020-10', '2020-11', '2020-12')
    # new_combination = {'name': '新组合', 'data': np.array([20, 30, 40, 50, 60, 20, 30, 40, 50, 60, 50, 60])}
    # origin_combination = {'name': '原组合', 'data': np.array([10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 40, 50])}
    # index = {'name': '上证指数', 'data': np.array([-10, 10, 5, 55, 24, 10, 20, 8, 10, 31, 40, 32])}
    # draw_combination_chart(xlabels, new_combination, origin_combination, index)