result_service_v2.py 34.9 KB
Newer Older
赵杰's avatar
赵杰 committed
1 2 3 4 5 6 7 8 9 10 11 12
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2020/11/23 15:29
# @Author  : Jie. Z
# @Email   : zhaojiestudy@163.com
# @File    : result_service.py
# @Software: PyCharm

import pandas as pd
import numpy as np
import datetime
from decimal import Decimal
赵杰's avatar
赵杰 committed
13
from app.service.data_service_v2 import UserCustomerDataAdaptor
14
from app.service.portfolio_diagnose import cal_correlation, get_fund_name, get_frequency
赵杰's avatar
赵杰 committed
15 16 17 18 19 20 21
from app.utils.week_evaluation import *


class UserCustomerResultAdaptor(UserCustomerDataAdaptor):
    total_result_data = {}
    group_result_data = {}

赵杰's avatar
赵杰 committed
22 23
    def __init__(self, user_id, customer_id):
        super().__init__(user_id, customer_id)
赵杰's avatar
赵杰 committed
24 25 26 27 28 29 30 31 32

    # 组合结果数据
    def calculate_group_result_data(self):

        for folio in self.group_data.keys():
            folio_report_data = {}

            cur_folio_result_cnav_data = self.group_data[folio]["result_cnav_data"]
            cur_folio_order_data = self.group_data[folio]["order_df"]
33 34 35 36 37
            # freq_max = cur_folio_order_data["freq"].max()
            freq_list = [get_frequency(cur_folio_result_cnav_data[[p_nav]]) for p_nav in
                         cur_folio_result_cnav_data.columns]
            freq_dict = {250: 1, 52: 2, 24: 4, 12: 3, 4: 5}
            freq_max = freq_dict[min(freq_list)]
赵杰's avatar
赵杰 committed
38 39 40 41 42 43
            first_trade_date = cur_folio_order_data["confirm_share_date"].min()

            fund_id_list = list(cur_folio_order_data["fund_id"].unique())
            fund_id_list_earn = [i + "_earn" for i in fund_id_list]
            # fund_id_list_amount = [i + "_amount" for i in fund_id_list]
            profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
赵杰's avatar
赵杰 committed
44
            folio_report_data["fund_id_list"] = fund_id_list
赵杰's avatar
赵杰 committed
45 46 47 48 49

            # 组合收益率数组
            # return_ratio_df, contribution_decomposition= self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
            # resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
            resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
50 51 52 53 54
            if resample_cur_folio_result_cnav_data.index.values[-1] > self.end_date:
                last = resample_cur_folio_result_cnav_data.index.values[-1]
                resample_cur_folio_result_cnav_data["index_date"] = resample_cur_folio_result_cnav_data.index
                resample_cur_folio_result_cnav_data.loc[last, "index_date"] = self.end_date
                resample_cur_folio_result_cnav_data.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
55 56 57 58
            resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <= self.end_date]
            return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data,
                                                                                 fund_id_list)
            resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
59 60 61 62 63
            if resample_df.index.values[-1] > self.end_date:
                last = resample_df.index.values[-1]
                resample_df["index_date"] = resample_df.index
                resample_df.loc[last, "index_date"] = self.end_date
                resample_df.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
            resample_df = resample_df[resample_df.index <= self.end_date]


            # 收益分解df
            contribution_decomposition_df = contribution_decomposition.fillna(0)*100
            p_plot_data = []
            for a_fund_id in list(contribution_decomposition_df.columns):
                a_name = cur_folio_order_data[cur_folio_order_data["fund_id"]==a_fund_id]["fund_name"].values[0]
                plot_data = {'name': a_name, 'data': contribution_decomposition_df[a_fund_id].astype(np.float64).values}
                p_plot_data.append(plot_data)
            x_lables_data = list(contribution_decomposition_df.index)
            cumulative_data = {'name': '总收益', 'data': ((month_return_ratio_df["cum_return_ratio"] - 1)*100).values}
            folio_report_data["contribution_decomposition"] = {"xlabels": x_lables_data, "product_list": p_plot_data,
                                                               "cumulative": cumulative_data}

            # 总成本
赵杰's avatar
赵杰 committed
80
            total_cost = round(float((cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_share"]*cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["nav"]).sum()), 0)
赵杰's avatar
赵杰 committed
81 82 83 84 85 86 87 88 89 90 91 92 93
            folio_report_data["total_cost"] = total_cost

            # 累积盈利
            cumulative_profit = profit_df.sum().sum()
            folio_report_data["cumulative_profit"] = float(cumulative_profit)

            # 区间年化收益率
            n_freq = freq_days(int(freq_max))
            return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1]-1), resample_df, n_freq)
            folio_report_data["return_ratio_year"] = float(return_ratio_year)

            # 波动率
            volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
赵杰's avatar
赵杰 committed
94
            folio_report_data["volatility"] = float(volatility_) if not math.isnan(volatility_) else 0.0
赵杰's avatar
赵杰 committed
95 96 97 98 99 100 101 102

            # 最大回撤
            drawdown = max_drawdown(resample_df["cum_return_ratio"])
            folio_report_data["max_drawdown"] = drawdown

            # 夏普比率
            sim = simple_return(resample_df["cum_return_ratio"])
            exc = excess_return(sim, BANK_RATE, n_freq)
103 104 105 106
            try:
                sharpe = sharpe_ratio(exc, sim, n_freq)
            except ZeroDivisionError:
                sharpe = 0.0
赵杰's avatar
赵杰 committed
107
            folio_report_data["sharpe"] = float(sharpe) if not math.isnan(sharpe) else 0.0
赵杰's avatar
赵杰 committed
108 109 110 111 112 113 114 115 116 117 118 119

            # 期末资产
            ending_assets = cumulative_profit + total_cost
            folio_report_data["ending_assets"] = float(ending_assets)

            # 本月收益
            cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date+datetime.timedelta(days=1), fund_id_list_earn]
            cur_month_profit = cur_month_profit_df.sum().sum()
            folio_report_data["cur_month_profit"] = float(cur_month_profit)

            # 本月累积收益率
            last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
赵杰's avatar
赵杰 committed
120
            cur_profit_ratio = return_ratio_df.loc[self.month_start_date - datetime.timedelta(days=1):, "cum_return_ratio"].values
赵杰's avatar
赵杰 committed
121 122 123
            if len(last_profit_ratio) <= 0:
                cur_month_profit_ratio = cur_profit_ratio[-1] - 1
            else:
124 125 126 127
                if len(cur_profit_ratio) < 1:
                    cur_month_profit_ratio = 0
                else:
                    cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
128 129 130 131 132 133 134 135 136 137 138 139 140 141
            folio_report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)

            # 今年累积收益
            cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
            cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
            cur_year_profit = cur_year_profit_df.sum().sum()
            folio_report_data["cur_year_profit"] = float(cur_year_profit)

            # 今年累积收益率
            last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
            cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
            if len(last_profit_ratio) <= 0:
                cur_year_profit_ratio = cur_profit_ratio[-1] - 1
            else:
142 143 144 145
                if len(cur_profit_ratio) < 1:
                    cur_year_profit_ratio = 0
                else:
                    cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            folio_report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)

            # 累积收益率
            cumulative_return= return_ratio_df["cum_return_ratio"].values[-1]
            folio_report_data["cumulative_return"] = float(cumulative_return)

            # 月度分组
            def year_month(x):
                a = x.year
                b = x.month
                return str(a) + "/" + str(b)

            profit_df_cp = profit_df.copy()
            profit_df_cp["date"] = profit_df_cp.index
            grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
            sum_group = grouped.agg(np.sum)
            month_sum = sum_group.sum(axis=1)

            # 贡献分解
            month_earn = sum_group.div(month_sum, axis='rows')
            month_earn["datetime"] = pd.to_datetime(month_earn.index)
            month_earn.sort_values(by="datetime", inplace=True)
            del month_earn["datetime"]
            col = list(month_earn.columns)
            col_ = {x: x.replace('_earn', '') for x in list(col)}
            month_earn.rename(columns=col_, inplace=True)
            # folio_report_data["contribution_decomposition"] = month_earn

            # 组合内单个基金净值数据  组合内基金持仓数据
            result_fund_nav_info, result_fund_hoding_info = self.group_fund_basic_info_data(cur_folio_order_data, cur_folio_result_cnav_data, cumulative_profit, total_cost)

            # 拼接组合以及综合结果数据
            folio_report_data["group_nav_info"] = result_fund_nav_info
            folio_report_data["group_hoding_info"] = result_fund_hoding_info
            folio_report_data["group_hoding_info_total"] = \
赵杰's avatar
赵杰 committed
181 182 183 184
                {"total_cost": "%.2f" % round(float(total_cost)/10000.0, 2),
                 "cur_month_profit": "%.2f" % round(cur_month_profit/10000.0, 2),
                 "cur_month_profit_ratio": "%.2f" % round(cur_month_profit_ratio*100, 2),
                 "ending_assets": "%.2f" % round(ending_assets/10000.0, 2),
赵杰's avatar
赵杰 committed
185
                 "weight": 100,
赵杰's avatar
赵杰 committed
186 187 188
                 "cumulative_profit": "%.2f" % round(cumulative_profit/10000.0, 2),
                 "cumulative_return": "%.2f" % round((cumulative_return-1)*100, 2),
                 "return_ratio_year": "%.2f" % round(return_ratio_year*100, 2)}
赵杰's avatar
赵杰 committed
189 190 191 192 193 194 195

            # 对应指数数据
            index_df = self.get_customer_index_nav_data()
            index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)],
                                                          "index")
            folio_report_data["index_result"] = index_result
            folio_report_data["return_df"] = resample_df
196 197

            # 对应组合相关性
赵杰's avatar
赵杰 committed
198 199 200 201
            min_date = cur_folio_order_data["confirm_share_date"].min()
            df_ = self.total_customer_order_cnav_df[fund_id_list]
            df_ = df_[df_.index >= min_date]
            correlation = self.old_correlation(df_)
202
            folio_report_data["correlation"] = correlation
赵杰's avatar
赵杰 committed
203 204 205 206 207 208 209 210
            self.group_result_data[folio] = folio_report_data

        return self.group_result_data

    # 综述数据
    def calculate_total_data(self):
        report_data = {}

赵杰's avatar
赵杰 committed
211
        cur_folio_result_cnav_data = self.total_customer_order_cnav_df.copy()
赵杰's avatar
赵杰 committed
212
        cur_folio_order_data = self.user_customer_order_df
赵杰's avatar
赵杰 committed
213 214 215 216 217 218
        freq_max = cur_folio_order_data["freq"].max()
        # freq_list = [get_frequency(cur_folio_result_cnav_data[[p_nav]]) for p_nav in
        #              cur_folio_result_cnav_data.columns]
        # freq_dict = {250: 1, 52: 2, 24: 4, 12: 3, 4: 5}
        # freq_max = freq_dict[min(freq_list)]

赵杰's avatar
赵杰 committed
219 220
        fund_id_list = list(cur_folio_order_data["fund_id"].unique())
        fund_id_list_earn = [i + "_earn" for i in fund_id_list]
赵杰's avatar
赵杰 committed
221
        fund_id_list_amount = [i + "_net_amount" for i in fund_id_list]
赵杰's avatar
赵杰 committed
222
        profit_df = cur_folio_result_cnav_data[fund_id_list_earn]
赵杰's avatar
赵杰 committed
223
        amount_df = cur_folio_result_cnav_data[fund_id_list_amount].copy()
赵杰's avatar
赵杰 committed
224 225 226 227 228 229 230 231 232 233 234

        # 持仓周期
        first_trade_date = cur_folio_order_data["confirm_share_date"].min()
        hold_days = (self.end_date - pd.to_datetime(first_trade_date)).days
        report_data["hold_days"] = hold_days

        # 组合收益率数组
        # return_ratio_df = self.combination_yield(cur_folio_result_cnav_data, fund_id_list)
        # resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)

        resample_cur_folio_result_cnav_data = resample(cur_folio_result_cnav_data, self.trade_cal_date, freq_max)
235 236 237 238 239
        if resample_cur_folio_result_cnav_data.index.values[-1] > self.end_date:
            last = resample_cur_folio_result_cnav_data.index.values[-1]
            resample_cur_folio_result_cnav_data["index_date"] = resample_cur_folio_result_cnav_data.index
            resample_cur_folio_result_cnav_data.loc[last, "index_date"] = self.end_date
            resample_cur_folio_result_cnav_data.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
240 241 242
        resample_cur_folio_result_cnav_data = resample_cur_folio_result_cnav_data[resample_cur_folio_result_cnav_data.index <=self.end_date]
        return_ratio_df, month_return_ratio_df, contribution_decomposition = self.combination_yield(resample_cur_folio_result_cnav_data, fund_id_list)
        resample_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
243 244 245 246 247
        if resample_df.index.values[-1] > self.end_date:
            last = resample_df.index.values[-1]
            resample_df["index_date"] = resample_df.index
            resample_df.loc[last, "index_date"] = self.end_date
            resample_df.set_index("index_date", inplace=True)
赵杰's avatar
赵杰 committed
248 249 250
        resample_df = resample_df[resample_df.index <= self.end_date]

        # 总成本
赵杰's avatar
赵杰 committed
251
        total_cost = round(float((cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["confirm_share"]*cur_folio_order_data[cur_folio_order_data["order_type"] == 1]["nav"]).sum()), 0)
赵杰's avatar
赵杰 committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        report_data["total_cost"] = total_cost

        # 累积盈利
        cumulative_profit = profit_df.sum().sum()
        report_data["cumulative_profit"] = float(cumulative_profit)

        # 区间年化收益
        n_freq = freq_days(int(freq_max))
        return_ratio_year = annual_return((resample_df["cum_return_ratio"].values[-1] - 1), resample_df, n_freq)
        report_data["return_ratio_year"] = float(return_ratio_year)

        # # 波动率
        # volatility_ = volatility(resample_df["cum_return_ratio"], n_freq)
        # report_data["volatility"] = float(volatility_)

        # 最大回撤
        drawdown = max_drawdown(resample_df["cum_return_ratio"])
        report_data["max_drawdown"] = drawdown
        #
        # # 夏普比率
        # sim = simple_return(resample_df["cum_return_ratio"])
        # exc = excess_return(sim, BANK_RATE, n_freq)
        # sharpe = sharpe_ratio(exc, sim, n_freq)
        # report_data["sharpe"] = float(sharpe)

        # 期末资产
        ending_assets = cumulative_profit + total_cost
        report_data["ending_assets"] = float(ending_assets)

        # 本月收益
        cur_month_profit_df = profit_df.loc[self.month_start_date:self.end_date + datetime.timedelta(days=1),
                              fund_id_list_earn]
        cur_month_profit = cur_month_profit_df.sum().sum()
        report_data["cur_month_profit"] = float(cur_month_profit)

        # 本月累积收益率
        last_profit_ratio = return_ratio_df.loc[:self.month_start_date, "cum_return_ratio"].values
        cur_profit_ratio = return_ratio_df.loc[self.month_start_date:, "cum_return_ratio"].values
        if len(last_profit_ratio) <= 0:
            cur_month_profit_ratio = cur_profit_ratio[-1] - 1
        else:
293 294 295 296
            if len(cur_profit_ratio) < 1:
                cur_month_profit_ratio = 0
            else:
                cur_month_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
297 298 299 300 301 302 303 304 305 306 307 308 309 310
        report_data["cur_month_profit_ratio"] = float(cur_month_profit_ratio)

        # 今年累积收益
        cur_year_date = pd.to_datetime(str(datetime.date(year=self.end_date.year, month=1, day=1)))
        cur_year_profit_df = profit_df.loc[cur_year_date:self.end_date + datetime.timedelta(days=1), fund_id_list_earn]
        cur_year_profit = cur_year_profit_df.sum().sum()
        report_data["cur_year_profit"] = float(cur_year_profit)

        # 今年累积收益率
        last_profit_ratio = return_ratio_df.loc[:cur_year_date, "cum_return_ratio"].values
        cur_profit_ratio = return_ratio_df.loc[cur_year_date:, "cum_return_ratio"].values
        if len(last_profit_ratio) <= 0:
            cur_year_profit_ratio = cur_profit_ratio[-1] - 1
        else:
311 312 313
            if len(cur_profit_ratio) < 1:
                cur_year_profit_ratio = 0.0
            else:
赵杰's avatar
赵杰 committed
314 315 316 317
                if len(cur_profit_ratio) < 1:
                    cur_year_profit_ratio = 0
                else:
                    cur_year_profit_ratio = (cur_profit_ratio[-1] - last_profit_ratio[-1]) / last_profit_ratio[-1]
赵杰's avatar
赵杰 committed
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        report_data["cur_year_profit_ratio"] = float(cur_year_profit_ratio)

        # 月度回报
        def year_month(x):
            a = x.year
            b = x.month
            return str(a) + "/" + str(b)

        profit_df_cp = profit_df.copy()
        profit_df_cp["date"] = profit_df_cp.index
        grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
        sum_group = grouped.agg(np.sum)
        month_sum = sum_group.sum(axis=1)

        return_ratio_df["date"] = return_ratio_df.index
        return_group = return_ratio_df.groupby(return_ratio_df["date"].apply(year_month))
        month_last_return_ratio = return_group.last()["cum_return_ratio"]
335 336

        month_sum = month_sum[month_sum.index.isin(month_last_return_ratio.index.values)]
赵杰's avatar
赵杰 committed
337 338 339 340 341
        month_result = pd.DataFrame({"date": month_sum.index, "profit": month_sum.values, "ratio": month_last_return_ratio.values})
        month_result["datetime"] = pd.to_datetime(month_result["date"])
        month_result.sort_values(by="datetime", inplace=True)
        report_data["month_return"] = month_result

赵杰's avatar
赵杰 committed
342 343 344 345 346 347 348 349 350
        #
        amount_df["date"] = amount_df.index
        grouped_amount = amount_df.groupby(amount_df["date"].apply(year_month))
        month_amount = grouped_amount.last()
        del month_amount["date"]
        month_amount_sum = month_amount.sum(axis=1)

        # 月度回报表格数据
        start_year = self.start_date.year
赵杰's avatar
赵杰 committed
351
        now_year = self.end_date.year
赵杰's avatar
赵杰 committed
352 353
        month_return_data_dict = {}
        for i in range(now_year-start_year+1):
赵杰's avatar
赵杰 committed
354
            month_return_data_dict[str(start_year+i)] = {str(j+1): {"profit": "-", "net_amount": "-"} for j in range(12)}
赵杰's avatar
赵杰 committed
355
        for d_index, d_row in month_sum.items():
赵杰's avatar
赵杰 committed
356 357
            cur_year = str(int(d_index[:4]))
            cur_month = str(int(d_index[5:]))
赵杰's avatar
赵杰 committed
358 359
            cur_profit = round(d_row/10000.0, 2)
            cur_net_amount = round(month_amount_sum.loc[d_index]/10000, 2)
赵杰's avatar
赵杰 committed
360 361
            month_return_data_dict[cur_year][cur_month]["profit"] = "%.2f"%cur_profit
            month_return_data_dict[cur_year][cur_month]["net_amount"] = "%.2f"%cur_net_amount
赵杰's avatar
赵杰 committed
362 363
        # 组合月度回报表
        report_data["month_return_data_dict"] = month_return_data_dict
赵杰's avatar
赵杰 committed
364 365 366 367 368 369 370 371 372 373 374 375 376 377

        # # 贡献分解
        # month_earn = sum_group.div(month_sum, axis='rows')
        # report_data["contribution_decomposition"] = month_earn

        # 累积收益率
        cumulative_return = return_ratio_df["cum_return_ratio"].values[-1]
        report_data["cumulative_return"] = float(cumulative_return)

        # 对应指数数据
        index_df = self.get_customer_index_nav_data()
        index_result = self.signal_fund_profit_result(index_df[index_df.index >= pd.to_datetime(first_trade_date)], "index")
        report_data["index_result"] = index_result

赵杰's avatar
赵杰 committed
378
        # self.__month_return(cur_folio_result_cnav_data, fund_id_list)
赵杰's avatar
赵杰 committed
379 380 381 382 383 384 385 386 387 388 389 390

        self.total_result_data = report_data
        return report_data

    # 基金净值数据,持仓数据
    def group_fund_basic_info_data(self, p_order_df, p_result_cnav_data, p_sum_profit, p_total_amount):
        group_fund_basic_info = []
        group_fund_hoding_info = []
        freq_max = p_order_df["freq"].max()
        n_freq = freq_days(int(freq_max))
        resample_df = resample(p_result_cnav_data, self.trade_cal_date, freq_max)
        for index, row in p_order_df.iterrows():
赵杰's avatar
赵杰 committed
391 392
            if row['order_type'] == 2 or row["confirm_share"] <= 0:
                continue
赵杰's avatar
赵杰 committed
393 394
            cur_fund_id = str(row["fund_id"])
            cur_fund_performance = self.all_fund_performance[cur_fund_id]
赵杰's avatar
赵杰 committed
395 396 397 398 399 400 401 402 403 404 405 406 407 408
            if len(cur_fund_performance) <=0:
                fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"], 4)}
                fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["ret_1w"] = "-"  # 上周
                fund_basic_info["ret_cum_1m"] = "-"  # 最近一个月
                fund_basic_info["ret_cum_6m"] = "-"  # 最近半年
                fund_basic_info["ret_cum_1y"] = "-"  # 最近一年
                fund_basic_info["ret_cum_ytd"] = "-"  # 今年以来
                fund_basic_info["ret_cum_incep"] = "-"  # 成立以来

                # 申购以来
                confirm_date = pd.to_datetime(row["confirm_share_date"])
                confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
wang zhengwei's avatar
wang zhengwei committed
409 410
                fund_basic_info["ret_after_confirm"] = str(round(
                    (fund_basic_info["cur_cnav"] - confirm_cnav) / confirm_cnav * 100, 2)) + "%"
赵杰's avatar
赵杰 committed
411 412 413 414 415 416 417 418 419
                # 分红
                distribution_df = self.all_fund_distribution[cur_fund_id]
                if distribution_df.empty:
                    fund_basic_info["distribution"] = "-"
                else:
                    distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
                    distribution = float(
                        distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
                    fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"
赵杰's avatar
赵杰 committed
420
            else:
赵杰's avatar
赵杰 committed
421 422 423 424 425
                cur_fund_info_series = cur_fund_performance.iloc[-1]
                # 基金净值数据
                fund_basic_info = {"fund_name": row["fund_name"], "confirm_nav": round(row["nav"],4)}
                fund_basic_info["cur_nav"] = round(float(self.fund_nav_total[cur_fund_id].dropna().values[-1]), 4)
                fund_basic_info["cur_cnav"] = round(float(self.fund_cnav_total[cur_fund_id].dropna().values[-1]), 4)
426 427 428 429 430 431
                fund_basic_info["ret_1w"] = str(round(cur_fund_info_series["ret_1w"]*100, 2)) + "%" if cur_fund_info_series["ret_1w"] is not None else "-"    # 上周
                fund_basic_info["ret_cum_1m"] = str(round(cur_fund_info_series["ret_cum_1m"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_1m"] is not None else "-"  # 最近一个月
                fund_basic_info["ret_cum_6m"] = str(round(cur_fund_info_series["ret_cum_6m"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_6m"] is not None else "-"  # 最近半年
                fund_basic_info["ret_cum_1y"] = str(round(cur_fund_info_series["ret_cum_1y"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_1y"] is not None else "-"  # 最近一年
                fund_basic_info["ret_cum_ytd"] = str(round(cur_fund_info_series["ret_cum_ytd"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_ytd"] is not None else "-"    # 今年以来
                fund_basic_info["ret_cum_incep"] = str(round(cur_fund_info_series["ret_cum_incep"]*100, 2)) + "%" if cur_fund_info_series["ret_cum_incep"] is not None else "-"    # 成立以来
赵杰's avatar
赵杰 committed
432 433 434
                # 申购以来
                confirm_date = pd.to_datetime(row["confirm_share_date"])
                confirm_cnav = float(p_result_cnav_data.loc[confirm_date, cur_fund_id])
435
                fund_basic_info["ret_after_confirm"] = str(round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)) + "%"
赵杰's avatar
赵杰 committed
436 437 438 439 440 441 442 443
                # 分红
                distribution_df = self.all_fund_distribution[cur_fund_id]
                if distribution_df.empty:
                    fund_basic_info["distribution"] = "-"
                else:
                    distribution_df["price_date"] = pd.to_datetime(distribution_df["price_date"])
                    distribution = float(distribution_df[distribution_df["price_date"] > confirm_date]["distribution"].sum())
                    fund_basic_info["distribution"] = round(distribution, 4) if distribution != 0 else "-"
赵杰's avatar
赵杰 committed
444 445 446 447 448

            group_fund_basic_info.append(fund_basic_info)

            # 基金持仓数据
            total_market_values = p_sum_profit + p_total_amount #   月末总市值
449
            fund_strategy_name = dict_substrategy[int(row["substrategy"])]
450 451 452
            if "长富" in row["fund_name"] or "盈沛" in row["fund_name"]:
                fund_strategy_name = "FOF"
            fund_hoding_info = {"fund_strategy_name": fund_strategy_name, "fund_name": row["fund_name"]}
453
            fund_hoding_info["confirm_date"] = row["confirm_share_date"].strftime("%Y-%m-%d")
赵杰's avatar
赵杰 committed
454
            fund_hoding_info["hold_year"] = "%.2f" % round((self.end_date - pd.to_datetime(row["confirm_share_date"])).days/365.0, 2)    # 存续年数
赵杰's avatar
赵杰 committed
455
            fund_hoding_info["market_values"] = round((float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"]))/10000, 2)
赵杰's avatar
赵杰 committed
456
            temp_market_values = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) + float(row["confirm_amount"])
赵杰's avatar
赵杰 committed
457 458
            fund_hoding_info["weight"] = "%.2f" % round(float(fund_hoding_info["market_values"]) / total_market_values * 10000.0 * 100, 2)  # 月末占比
            fund_hoding_info["cost"] = "%.2f" % round(float(row["confirm_amount"])/10000, 2)     # 投资本金
赵杰's avatar
赵杰 committed
459
            # 当月收益
赵杰's avatar
赵杰 committed
460 461 462 463 464 465 466
            if row['confirm_share_date'] > self.month_start_date:
                cal_month_start_date = row['confirm_share_date']
                last_month_cnav_serise = p_result_cnav_data[p_result_cnav_data.index == pd.to_datetime(cal_month_start_date)][
                    row["fund_id"]].dropna()
            else:
                cal_month_start_date = self.month_start_date - datetime.timedelta(days=1)
                last_month_cnav_serise = p_result_cnav_data[p_result_cnav_data.index<pd.to_datetime(cal_month_start_date)][row["fund_id"]].dropna()
赵杰's avatar
赵杰 committed
467 468
            if len(last_month_cnav_serise) == 0:
                fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) / 10000, 2)
赵杰's avatar
赵杰 committed
469 470
                temp_profit = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav)
                temp_profit_ratio = (fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav
赵杰's avatar
赵杰 committed
471 472 473
            else:
                last_month_cnav = float(last_month_cnav_serise.values[-1])
                fund_hoding_info["profit"] = round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - last_month_cnav)/10000, 2)
赵杰's avatar
赵杰 committed
474 475
                temp_profit = float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - last_month_cnav)
                temp_profit_ratio = (fund_basic_info["cur_cnav"] - last_month_cnav) / last_month_cnav
赵杰's avatar
赵杰 committed
476
            # 当月收益率
赵杰's avatar
赵杰 committed
477 478
            # fund_hoding_info["month_return_ratio"] = "%.2f" % round(temp_profit / temp_market_values*100, 2)
            fund_hoding_info["month_return_ratio"] = "%.2f" % round(temp_profit_ratio * 100, 2)
赵杰's avatar
赵杰 committed
479
            # 累积收益
赵杰's avatar
赵杰 committed
480
            fund_hoding_info["cum_profit"] = "%.2f" % round(float(row["confirm_share"]) * (fund_basic_info["cur_cnav"] - confirm_cnav) / 10000, 2)
赵杰's avatar
赵杰 committed
481
            # 累积收益率
赵杰's avatar
赵杰 committed
482
            fund_hoding_info["cum_profit_ratio"] = "%.2f" % round((fund_basic_info["cur_cnav"] - confirm_cnav)/confirm_cnav*100, 2)
赵杰's avatar
赵杰 committed
483
            cum_profit_ratio_temp = (fund_basic_info["cur_cnav"] - confirm_cnav) / confirm_cnav
赵杰's avatar
赵杰 committed
484 485
            # 累积年化收益率
            cur_resample_df = resample_df[[row["fund_id"]]].dropna()
赵杰's avatar
赵杰 committed
486
            return_ratio_year = annual_return(float(cum_profit_ratio_temp), cur_resample_df, n_freq)
赵杰's avatar
赵杰 committed
487
            fund_hoding_info["return_ratio_year"] = "%.2f" % round(float(return_ratio_year)*100, 2)
赵杰's avatar
赵杰 committed
488 489 490 491 492 493 494 495 496 497 498 499 500
            group_fund_hoding_info.append(fund_hoding_info)
        return group_fund_basic_info, group_fund_hoding_info

    @staticmethod
    def combination_yield(p_combina_df, fund_id_list):
        fund_id_list_amount = [i + "_net_amount" for i in fund_id_list]
        fund_id_list_profit_ratio = [i + "_profit_ratio" for i in fund_id_list]


        nav_net_amount_df = p_combina_df[fund_id_list + fund_id_list_amount+fund_id_list_profit_ratio].copy()
        # nav_net_amount_df = resample(return_ratio_df, self.trade_cal_date, freq_max)
        nav_net_amount_df["sum_net_amount"] = nav_net_amount_df[fund_id_list_amount].sum(axis=1).apply(lambda x: Decimal.from_float(x))
        for amount_name in fund_id_list:
501 502 503 504 505 506 507
            price = nav_net_amount_df[amount_name].dropna()
            profit = price.diff().fillna(Decimal(0))
            profit_ratio_new = profit / price.shift(1)
            profit_ratio_old = nav_net_amount_df[amount_name+"_profit_ratio"]
            nan_index = profit_ratio_new[pd.isna(profit_ratio_new)].index
            profit_ratio_new[nan_index] = profit_ratio_old[nan_index]
            nav_net_amount_df[amount_name + "_profit_ratio"] = profit_ratio_new
赵杰's avatar
赵杰 committed
508
            nav_net_amount_df[amount_name+"_amount_ratio"] = nav_net_amount_df[amount_name+"_net_amount"]/(nav_net_amount_df["sum_net_amount"])
509

赵杰's avatar
赵杰 committed
510
            fund_profit_ratio = nav_net_amount_df[amount_name + "_profit_ratio"].dropna() + 1
511 512
            amount_ratio_shift = nav_net_amount_df[amount_name + "_amount_ratio"].shift(1)
            num_va = len(amount_ratio_shift[amount_ratio_shift.values==0])
赵杰's avatar
赵杰 committed
513
            if num_va+1 >= len(amount_ratio_shift):
赵杰's avatar
赵杰 committed
514 515 516
                amount_ratio_shift.iloc[num_va] = 0
            else:
                amount_ratio_shift.iloc[num_va] = amount_ratio_shift.values[num_va+1]
517 518
            nav_net_amount_df[amount_name + "_profit_ratio_weight"] =  amount_ratio_shift * nav_net_amount_df[amount_name + "_profit_ratio"]
            nav_net_amount_df[amount_name + "_profit_cum_ratio_weight"] = (fund_profit_ratio.cumprod()-1)*amount_ratio_shift # enter_date = nav_net_amount_df[amount_name+"_profit_ratio"].dropna()
赵杰's avatar
赵杰 committed
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

        fund_id_list_profit_ratio_weight = [i + "_profit_ratio_weight" for i in fund_id_list]
        nav_profit_ratio_weight = nav_net_amount_df[fund_id_list_profit_ratio_weight].copy().fillna(method='ffill')

        # 组合收益率
        return_ratio = nav_profit_ratio_weight.sum(axis=1)

        # 组合累积收益率
        # return_ratio_list = list(return_ratio.values)
        cum_return_ratio = (return_ratio + 1).fillna(0).cumprod()

        # 收益率df
        cum_return_ratio_df = pd.DataFrame(return_ratio.values, columns=["return_ratio"])
        cum_return_ratio_df["cum_return_ratio"] = cum_return_ratio.values
        cum_return_ratio_df.index = return_ratio.index

        # 单个基金累计收益分解df
        weight_name_list = [i + "_profit_cum_ratio_weight"  for i in fund_id_list]
        signal_fund_cum_weight = nav_net_amount_df[weight_name_list]
        re_name = {x: x.replace("_profit_cum_ratio_weight", "") for x in weight_name_list}
        signal_fund_cum_weight.rename(columns=re_name, inplace=True)

        # 月度分组
        def year_month(x):
            a = x.year
            b = x.month
            return str(a) + "/" + str(b)

        profit_df_cp = signal_fund_cum_weight.copy()
        profit_df_cp["date"] = list(profit_df_cp.index)
        grouped = profit_df_cp.groupby(profit_df_cp["date"].apply(year_month))
        month_signal_fund_cum = grouped.last()
        month_signal_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
        month_signal_fund_cum.sort_values(by="datetime", inplace=True)
        del month_signal_fund_cum["datetime"]

        p_cum_df = cum_return_ratio_df.copy()
        p_cum_df["date"] = list(p_cum_df.index)
        cum_grouped = p_cum_df.groupby(p_cum_df["date"].apply(year_month))
        month_fund_cum = cum_grouped.last()
        month_fund_cum.rename(columns={"date": "datetime"}, inplace=True)
        month_fund_cum.sort_values(by="datetime", inplace=True)
        del month_fund_cum["datetime"]

        return cum_return_ratio_df, month_fund_cum, month_signal_fund_cum

    @staticmethod
    def signal_fund_profit_result(p_fund_nav_df, cur_fund_id):
        result = {"fund_id": cur_fund_id}
        fund_nav_df = p_fund_nav_df.copy()
        profit = fund_nav_df[cur_fund_id].dropna() - fund_nav_df[cur_fund_id].dropna().shift(1)
        fund_nav_df[cur_fund_id + "_profit"] = profit
        fund_nav_df[cur_fund_id + "_profit_ratio"] = profit / fund_nav_df[cur_fund_id].dropna().shift(1)

        # 累积收益率
        return_ratio_list = list(fund_nav_df[cur_fund_id + "_profit_ratio"].astype("float64").values)
        cum_return_ratio = []
        last_ratio = 0
        for i in range(len(return_ratio_list)):
            if i == 0:
                last_ratio = 1 + return_ratio_list[i] if str(return_ratio_list[0]) != 'nan' else 1
                cum_return_ratio.append(last_ratio)
                continue

            cur_ratio = (1 + return_ratio_list[i]) * last_ratio
            cum_return_ratio.append(cur_ratio)
            last_ratio = cur_ratio

        fund_nav_df['cum_return_ratio'] = cum_return_ratio

        # 区间收益率
        result["return_ratio"] = cum_return_ratio[-1]

        # 区间年化收益
        n_freq = freq_days(1)
        return_ratio_year = annual_return((fund_nav_df["cum_return_ratio"].values[-1] - 1), fund_nav_df, n_freq)
        result["return_ratio_year"] = float(return_ratio_year)

        # 波动率
        volatility_ = volatility(fund_nav_df["cum_return_ratio"], n_freq)
赵杰's avatar
赵杰 committed
599
        result["volatility"] = float(volatility_) if not math.isnan(volatility_) else 0.0
赵杰's avatar
赵杰 committed
600 601 602 603 604 605 606 607

        # 最大回撤
        drawdown = max_drawdown(fund_nav_df["cum_return_ratio"])
        result["max_drawdown"] = drawdown

        # 夏普比率
        sim = simple_return(fund_nav_df["cum_return_ratio"])
        exc = excess_return(sim, BANK_RATE, n_freq)
608 609 610 611
        try:
            sharpe = sharpe_ratio(exc, sim, n_freq)
        except ZeroDivisionError:
            sharpe = 0.0
赵杰's avatar
赵杰 committed
612 613 614 615 616 617 618
        result["sharpe"] = float(sharpe)

        return result

    def get_month_return_chart(self):
        res = self.total_result_data["month_return"]
        xlabels = res["date"].values
赵杰's avatar
赵杰 committed
619
        res["profit"] = res["profit"].apply(lambda x: round(x/10000.0, 2))
赵杰's avatar
赵杰 committed
620 621 622 623 624 625 626 627 628 629 630 631
        res["ratio"] = res["ratio"].apply(lambda x: round((x-1)*100, 2))
        product_list = {'name': '月度回报', 'data': res["profit"].values}
        cumulative = {'name': '累积收益', 'data': res["ratio"].values}

        return xlabels, [product_list], cumulative

    def get_total_basic_data(self):
        return self.total_result_data

    def get_group_data(self):
        return self.group_result_data

赵杰's avatar
赵杰 committed
632
    def old_correlation(self, cnav_data):
赵杰's avatar
赵杰 committed
633 634
        folio_cnav_data = cnav_data.copy()
        folio_cnav_data = folio_cnav_data.fillna(method="bfill")
635 636 637 638 639
        old_correlation = cal_correlation(folio_cnav_data)
        old_correlation = old_correlation.fillna(1).round(2)
        old_correlation.columns = old_correlation.columns.map(lambda x: get_fund_name(x).values[0][0])
        old_correlation.index = old_correlation.index.map(lambda x: get_fund_name(x).values[0][0])
        return old_correlation